Answer
Verified
110.4k+ views
Hint: The elements beryllium, magnesium, calcium and barium belong to group 2 of the periodic table. These are called alkaline Earth metals. Electrode potential is defined as the tendency of a chemical species to gain or lose electrons.
Complete Step by Step Solution:
The general outer electronic configuration of alkaline earth metals is
\[{\rm{n}}{{\rm{s}}^{\rm{2}}}\].
These elements have two electrons in the S orbital of the valency cell. These elements lose two electrons to undergo oxidation.
\[{\rm{M}} \to {{\rm{M}}^{{\rm{2 + }}}}{\rm{ + 2}}{{\rm{e}}^{\rm{ - }}}\] where M = alkaline earth metal
These metals are strong reducing agents. Reducing agents are the chemical species that reduce other chemical species and undergo oxidation themselves. The oxidation potential is defined as the measure of the tendency of an element to lose electrons. Oxidation potential increases on moving from top to bottom in a group. This is because on moving down the group atomic size increases. Electrons are added to higher energy levels. Valence electrons are not closely held by the nucleus. The loss of electrons is easier as we move down the group.
Out of the given options, beryllium has the smallest atomic size. The loss of electrons or oxidation is difficult. Beryllium has the least oxidation potential.
We know that \[{\rm{oxidation potential = }}\left( {{\rm{ - reduction potential}}} \right)\].
As Be has the least oxidation potential, it has the highest reduction potential.
So, option A is correct.
Note: As the atomic size increases down the group, the electropositive character which is the tendency to lose electrons increases on moving from Be to Ba. The oxidation potential is defined as the measure of the tendency of an element to get oxidised i.e., to lose electrons. The reduction potential is defined as the measure of the tendency of an element to get reduced i.e., to lose electrons.
Complete Step by Step Solution:
The general outer electronic configuration of alkaline earth metals is
\[{\rm{n}}{{\rm{s}}^{\rm{2}}}\].
These elements have two electrons in the S orbital of the valency cell. These elements lose two electrons to undergo oxidation.
\[{\rm{M}} \to {{\rm{M}}^{{\rm{2 + }}}}{\rm{ + 2}}{{\rm{e}}^{\rm{ - }}}\] where M = alkaline earth metal
These metals are strong reducing agents. Reducing agents are the chemical species that reduce other chemical species and undergo oxidation themselves. The oxidation potential is defined as the measure of the tendency of an element to lose electrons. Oxidation potential increases on moving from top to bottom in a group. This is because on moving down the group atomic size increases. Electrons are added to higher energy levels. Valence electrons are not closely held by the nucleus. The loss of electrons is easier as we move down the group.
Out of the given options, beryllium has the smallest atomic size. The loss of electrons or oxidation is difficult. Beryllium has the least oxidation potential.
We know that \[{\rm{oxidation potential = }}\left( {{\rm{ - reduction potential}}} \right)\].
As Be has the least oxidation potential, it has the highest reduction potential.
So, option A is correct.
Note: As the atomic size increases down the group, the electropositive character which is the tendency to lose electrons increases on moving from Be to Ba. The oxidation potential is defined as the measure of the tendency of an element to get oxidised i.e., to lose electrons. The reduction potential is defined as the measure of the tendency of an element to get reduced i.e., to lose electrons.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In a steady state of heat conduction the temperature class 11 physics JEE_Main
Give one chemical test to distinguish between the following class 12 chemistry JEE_Main
Two mirrors one concave and the other convex are placed class 12 physics JEE_Main
A coil of inductance 020 H is connected in series with class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN