Answer
Verified
110.7k+ views
Hint: Use the formula for the nth term of A.P ${{a}_{n}}=a+(n-1)d$. Where ‘a’ is the first term and ‘d’ is the common difference to find the 54th term. Then use ${{a}_{n}}=a+(n-1)d$again to find the term which is 132 more than the 54th term. Alternatively, you can use the property that if mth term is p more than nth term then $m=n+\dfrac{p}{d}$.
Complete step-by-step solution -
We know that ${{a}_{n}}=a+(n-1)d\text{ (i)}$
In the given A.P we have a = 3
d = 15-3 = 12
Put n = 54, a = 3 and d = 12 in equation (i), we get
$\begin{align}
& {{a}_{54}}=3+\left( 54-1 \right)\times 12 \\
& \Rightarrow {{a}_{54}}=3+53\times 12 \\
& \Rightarrow {{a}_{54}}=3+636 \\
& \Rightarrow {{a}_{54}}=639 \\
\end{align}$
Let the kth term of A.P be 132 more than 54th term
Hence ${{a}_{k}}={{a}_{54}}+132$
$\Rightarrow a+\left( k-1 \right)d=639+132$
Put a = 3 and d = 12
$\Rightarrow 3+\left( k-1 \right)12=771$
Subtracting 3 from both sides we get
$\begin{align}
& \Rightarrow 3+\left( k-1 \right)12-3=771-3 \\
& \Rightarrow \left( k-1 \right)12=768 \\
\end{align}$
Dividing both sides by 12, we get
$\begin{align}
& \Rightarrow \dfrac{\left( k-1 \right)12}{12}=\dfrac{768}{12} \\
& \Rightarrow k-1=64 \\
\end{align}$
Transposing 1 to RHS we get
k = 64+1 = 65
Hence the 65th term is 132 more than 54th term
Note: [a] Alternatively, let mth term is p more than nth term
Then we have
$\begin{align}
& {{a}_{m}}={{a}_{n}}+p \\
& \Rightarrow a+\left( m-1 \right)d=a+\left( n-1 \right)d+p \\
\end{align}$
Subtracting a from both sides we get
$\begin{align}
& \Rightarrow a+\left( m-1 \right)d-a=a+\left( n-1 \right)d+p-a \\
& \Rightarrow \left( m-1 \right)d=\left( n-1 \right)d+p \\
\end{align}$
Dividing by d on both sides we get
$\begin{align}
& \dfrac{\left( m-1 \right)d}{d}=\dfrac{\left( n-1 \right)d+p}{d} \\
& \Rightarrow m-1=\dfrac{\left( n-1 \right)d+p}{d} \\
\end{align}$
Transposing 1 to RHS we get
$\begin{align}
& \Rightarrow m=\dfrac{\left( n-1 \right)d+p}{d}+1 \\
& \Rightarrow m=\dfrac{\left( n-1 \right)d}{d}+\dfrac{p}{d}+1 \\
& \Rightarrow m=n-1+\dfrac{p}{d}+1 \\
& \Rightarrow m=n+\dfrac{p}{d} \\
\end{align}$
Put n = 54, p = 132 and d = 12 we get
$m=54+\dfrac{132}{12}$
m = 54+11 = 65
[b] The value of the first term was not needed in solving the question through the second method.
[c] Some of the most important formulae in A.P are:
[1] ${{a}_{n}}=a+\left( n-1 \right)d$
[2] ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
[3] ${{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right]$ where l is the last term.
[4] ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
[5] ${{a}_{n}}={{S}_{n}}-{{S}_{n-1}}$
Complete step-by-step solution -
We know that ${{a}_{n}}=a+(n-1)d\text{ (i)}$
In the given A.P we have a = 3
d = 15-3 = 12
Put n = 54, a = 3 and d = 12 in equation (i), we get
$\begin{align}
& {{a}_{54}}=3+\left( 54-1 \right)\times 12 \\
& \Rightarrow {{a}_{54}}=3+53\times 12 \\
& \Rightarrow {{a}_{54}}=3+636 \\
& \Rightarrow {{a}_{54}}=639 \\
\end{align}$
Let the kth term of A.P be 132 more than 54th term
Hence ${{a}_{k}}={{a}_{54}}+132$
$\Rightarrow a+\left( k-1 \right)d=639+132$
Put a = 3 and d = 12
$\Rightarrow 3+\left( k-1 \right)12=771$
Subtracting 3 from both sides we get
$\begin{align}
& \Rightarrow 3+\left( k-1 \right)12-3=771-3 \\
& \Rightarrow \left( k-1 \right)12=768 \\
\end{align}$
Dividing both sides by 12, we get
$\begin{align}
& \Rightarrow \dfrac{\left( k-1 \right)12}{12}=\dfrac{768}{12} \\
& \Rightarrow k-1=64 \\
\end{align}$
Transposing 1 to RHS we get
k = 64+1 = 65
Hence the 65th term is 132 more than 54th term
Note: [a] Alternatively, let mth term is p more than nth term
Then we have
$\begin{align}
& {{a}_{m}}={{a}_{n}}+p \\
& \Rightarrow a+\left( m-1 \right)d=a+\left( n-1 \right)d+p \\
\end{align}$
Subtracting a from both sides we get
$\begin{align}
& \Rightarrow a+\left( m-1 \right)d-a=a+\left( n-1 \right)d+p-a \\
& \Rightarrow \left( m-1 \right)d=\left( n-1 \right)d+p \\
\end{align}$
Dividing by d on both sides we get
$\begin{align}
& \dfrac{\left( m-1 \right)d}{d}=\dfrac{\left( n-1 \right)d+p}{d} \\
& \Rightarrow m-1=\dfrac{\left( n-1 \right)d+p}{d} \\
\end{align}$
Transposing 1 to RHS we get
$\begin{align}
& \Rightarrow m=\dfrac{\left( n-1 \right)d+p}{d}+1 \\
& \Rightarrow m=\dfrac{\left( n-1 \right)d}{d}+\dfrac{p}{d}+1 \\
& \Rightarrow m=n-1+\dfrac{p}{d}+1 \\
& \Rightarrow m=n+\dfrac{p}{d} \\
\end{align}$
Put n = 54, p = 132 and d = 12 we get
$m=54+\dfrac{132}{12}$
m = 54+11 = 65
[b] The value of the first term was not needed in solving the question through the second method.
[c] Some of the most important formulae in A.P are:
[1] ${{a}_{n}}=a+\left( n-1 \right)d$
[2] ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
[3] ${{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right]$ where l is the last term.
[4] ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
[5] ${{a}_{n}}={{S}_{n}}-{{S}_{n-1}}$
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main