
Which term of the following A.P
\[3,\text{ }15,\text{ }27,\text{ }39,\text{ }\ldots \]
will be 132 more than the 54th term of the A.P.
Answer
233.1k+ views
Hint: Use the formula for the nth term of A.P ${{a}_{n}}=a+(n-1)d$. Where ‘a’ is the first term and ‘d’ is the common difference to find the 54th term. Then use ${{a}_{n}}=a+(n-1)d$again to find the term which is 132 more than the 54th term. Alternatively, you can use the property that if mth term is p more than nth term then $m=n+\dfrac{p}{d}$.
Complete step-by-step solution -
We know that ${{a}_{n}}=a+(n-1)d\text{ (i)}$
In the given A.P we have a = 3
d = 15-3 = 12
Put n = 54, a = 3 and d = 12 in equation (i), we get
$\begin{align}
& {{a}_{54}}=3+\left( 54-1 \right)\times 12 \\
& \Rightarrow {{a}_{54}}=3+53\times 12 \\
& \Rightarrow {{a}_{54}}=3+636 \\
& \Rightarrow {{a}_{54}}=639 \\
\end{align}$
Let the kth term of A.P be 132 more than 54th term
Hence ${{a}_{k}}={{a}_{54}}+132$
$\Rightarrow a+\left( k-1 \right)d=639+132$
Put a = 3 and d = 12
$\Rightarrow 3+\left( k-1 \right)12=771$
Subtracting 3 from both sides we get
$\begin{align}
& \Rightarrow 3+\left( k-1 \right)12-3=771-3 \\
& \Rightarrow \left( k-1 \right)12=768 \\
\end{align}$
Dividing both sides by 12, we get
$\begin{align}
& \Rightarrow \dfrac{\left( k-1 \right)12}{12}=\dfrac{768}{12} \\
& \Rightarrow k-1=64 \\
\end{align}$
Transposing 1 to RHS we get
k = 64+1 = 65
Hence the 65th term is 132 more than 54th term
Note: [a] Alternatively, let mth term is p more than nth term
Then we have
$\begin{align}
& {{a}_{m}}={{a}_{n}}+p \\
& \Rightarrow a+\left( m-1 \right)d=a+\left( n-1 \right)d+p \\
\end{align}$
Subtracting a from both sides we get
$\begin{align}
& \Rightarrow a+\left( m-1 \right)d-a=a+\left( n-1 \right)d+p-a \\
& \Rightarrow \left( m-1 \right)d=\left( n-1 \right)d+p \\
\end{align}$
Dividing by d on both sides we get
$\begin{align}
& \dfrac{\left( m-1 \right)d}{d}=\dfrac{\left( n-1 \right)d+p}{d} \\
& \Rightarrow m-1=\dfrac{\left( n-1 \right)d+p}{d} \\
\end{align}$
Transposing 1 to RHS we get
$\begin{align}
& \Rightarrow m=\dfrac{\left( n-1 \right)d+p}{d}+1 \\
& \Rightarrow m=\dfrac{\left( n-1 \right)d}{d}+\dfrac{p}{d}+1 \\
& \Rightarrow m=n-1+\dfrac{p}{d}+1 \\
& \Rightarrow m=n+\dfrac{p}{d} \\
\end{align}$
Put n = 54, p = 132 and d = 12 we get
$m=54+\dfrac{132}{12}$
m = 54+11 = 65
[b] The value of the first term was not needed in solving the question through the second method.
[c] Some of the most important formulae in A.P are:
[1] ${{a}_{n}}=a+\left( n-1 \right)d$
[2] ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
[3] ${{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right]$ where l is the last term.
[4] ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
[5] ${{a}_{n}}={{S}_{n}}-{{S}_{n-1}}$
Complete step-by-step solution -
We know that ${{a}_{n}}=a+(n-1)d\text{ (i)}$
In the given A.P we have a = 3
d = 15-3 = 12
Put n = 54, a = 3 and d = 12 in equation (i), we get
$\begin{align}
& {{a}_{54}}=3+\left( 54-1 \right)\times 12 \\
& \Rightarrow {{a}_{54}}=3+53\times 12 \\
& \Rightarrow {{a}_{54}}=3+636 \\
& \Rightarrow {{a}_{54}}=639 \\
\end{align}$
Let the kth term of A.P be 132 more than 54th term
Hence ${{a}_{k}}={{a}_{54}}+132$
$\Rightarrow a+\left( k-1 \right)d=639+132$
Put a = 3 and d = 12
$\Rightarrow 3+\left( k-1 \right)12=771$
Subtracting 3 from both sides we get
$\begin{align}
& \Rightarrow 3+\left( k-1 \right)12-3=771-3 \\
& \Rightarrow \left( k-1 \right)12=768 \\
\end{align}$
Dividing both sides by 12, we get
$\begin{align}
& \Rightarrow \dfrac{\left( k-1 \right)12}{12}=\dfrac{768}{12} \\
& \Rightarrow k-1=64 \\
\end{align}$
Transposing 1 to RHS we get
k = 64+1 = 65
Hence the 65th term is 132 more than 54th term
Note: [a] Alternatively, let mth term is p more than nth term
Then we have
$\begin{align}
& {{a}_{m}}={{a}_{n}}+p \\
& \Rightarrow a+\left( m-1 \right)d=a+\left( n-1 \right)d+p \\
\end{align}$
Subtracting a from both sides we get
$\begin{align}
& \Rightarrow a+\left( m-1 \right)d-a=a+\left( n-1 \right)d+p-a \\
& \Rightarrow \left( m-1 \right)d=\left( n-1 \right)d+p \\
\end{align}$
Dividing by d on both sides we get
$\begin{align}
& \dfrac{\left( m-1 \right)d}{d}=\dfrac{\left( n-1 \right)d+p}{d} \\
& \Rightarrow m-1=\dfrac{\left( n-1 \right)d+p}{d} \\
\end{align}$
Transposing 1 to RHS we get
$\begin{align}
& \Rightarrow m=\dfrac{\left( n-1 \right)d+p}{d}+1 \\
& \Rightarrow m=\dfrac{\left( n-1 \right)d}{d}+\dfrac{p}{d}+1 \\
& \Rightarrow m=n-1+\dfrac{p}{d}+1 \\
& \Rightarrow m=n+\dfrac{p}{d} \\
\end{align}$
Put n = 54, p = 132 and d = 12 we get
$m=54+\dfrac{132}{12}$
m = 54+11 = 65
[b] The value of the first term was not needed in solving the question through the second method.
[c] Some of the most important formulae in A.P are:
[1] ${{a}_{n}}=a+\left( n-1 \right)d$
[2] ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
[3] ${{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right]$ where l is the last term.
[4] ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
[5] ${{a}_{n}}={{S}_{n}}-{{S}_{n-1}}$
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

