Answer
Verified
112.8k+ views
Hint: Breaking strength of a rope is nothing but a tension in a rope. Now use Newton’s second law of motion to form a relation and find the minimum acceleration.
Formula Used:
$F$ = $ma$
Complete step by step answer:
We have been given a rope whose breaking strength is two third of the foreman who is sliding down on it , therefore we can say that the rope has a tension of two third of a weight of a foreman in upwards direction.
Now let m be the mass of a foreman
Thus we have W = mg (downward direction), T = $\dfrac{2}{3}mg$ (upwards direction)
Where W is weight of a foreman and T is a tension
Now applying Newton’s Second Law of Motion on a foreman sliding downwards
F = ma
F is here is T – W (net force)
Substituting this in the above formula we get
$
\dfrac{2}{3}mg - mg = ma \\
\\
$
Cancelling out m and solving LHS we get
$a = - \dfrac{g}{3}$
Therefore the minimum acceleration is $\dfrac{g}{3}$ in the downwards direction.
Since only magnitude is given in the options we can say option D is the correct answer.
Note: It is important to understand the concept of plus and minus signs in force related problems. These signs denote nothing but the direction of application of force. It is also important to know about Newton's Laws to solve these types of problems.
Formula Used:
$F$ = $ma$
Complete step by step answer:
We have been given a rope whose breaking strength is two third of the foreman who is sliding down on it , therefore we can say that the rope has a tension of two third of a weight of a foreman in upwards direction.
Now let m be the mass of a foreman
Thus we have W = mg (downward direction), T = $\dfrac{2}{3}mg$ (upwards direction)
Where W is weight of a foreman and T is a tension
Now applying Newton’s Second Law of Motion on a foreman sliding downwards
F = ma
F is here is T – W (net force)
Substituting this in the above formula we get
$
\dfrac{2}{3}mg - mg = ma \\
\\
$
Cancelling out m and solving LHS we get
$a = - \dfrac{g}{3}$
Therefore the minimum acceleration is $\dfrac{g}{3}$ in the downwards direction.
Since only magnitude is given in the options we can say option D is the correct answer.
Note: It is important to understand the concept of plus and minus signs in force related problems. These signs denote nothing but the direction of application of force. It is also important to know about Newton's Laws to solve these types of problems.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line