Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 12 - Limits and Derivatives Exercise 12.2

ffImage
widget title icon
Latest Updates

widget icon
Enrol Now :
JEE Test Series
widget icon
Grab Your Seat :
JEE Pro Course
widget icon
Register Today :
JEE One to One Coaching

NCERT Solutions for Maths Chapter 12 Exercise 12.2 Class 11 - FREE PDF Download

The  Class 11 Maths Exercise 12.2 Solutions, Limits and Derivatives, focuses on the fundamental concepts of limits, which are essential for understanding calculus. This exercise focuses on evaluating the limits of various functions and understanding their behavior as the input approaches a particular value. Students will learn to apply different techniques to find the limits, such as factoring, rationalizing, and using standard limit forms.

toc-symbol
Table of Content
1. NCERT Solutions for Maths Chapter 12 Exercise 12.2 Class 11 - FREE PDF Download
2. Glance on NCERT Solutions Maths Chapter 12 Exercise 12.2 Class 11 | Vedantu
3. Access NCERT Solutions for Maths Class 11 Chapter 12 - Limits and Derivatives
4. Class 11 Maths Chapter 12: Exercises Breakdown
5. CBSE Class 11 Maths Chapter 12 Other Study Materials
6. Chapter-Specific NCERT Solutions for Class 11 Maths
FAQs


These solutions are aligned with the updated CBSE guidelines for Class 11, ensuring students are well-prepared for exams. Clear explanations of complex topics help in grasping the core concepts in Limits and Derivatives Class 11 Maths NCERT Solutions. The Class 11 Maths Chapter 12 Questions and Answers PDF provides accurate answers to textbook questions and assists in effective exam preparation and better performance. Access the Maths Class 11 Syllabus here.


Glance on NCERT Solutions Maths Chapter 12 Exercise 12.2 Class 11 | Vedantu

  • NCERT Class 11 Maths Exercise 12.2 Solutions topics such as Derivatives, Algebra of the derivative of functions, derivatives of polynomials and trigonometric functions.

  • In derivatives, we measure the instantaneous rate of change of a function at a specific point. Imagine the function representing the position of a moving object over time. The derivative tells you how fast the object's position is changing at any given moment.

  • Algebra of Derivatives involves applying algebraic rules (like addition, subtraction, product, and quotient) to find the derivatives of more complex functions built from simpler ones. Just like with regular algebra, there are specific rules for differentiating different types of functions.

  • Derivatives of Polynomials and Trigonometric Functions are specific differentiation rules for particular functions like - Polynomial Functions and Trigonometric Functions.

  • Polynomial Functions a Functions of the form f(x) = x^n (where n is any real number) that have well-defined differentiation rules. The derivative of a polynomial involves bringing down the exponent and subtracting 1 from it.

  • Functions like sine (sin(x)), cosine (cos(x)), tangent (tan(x)), etc., also have defined differentiation rules. These rules involve memorizing the derivatives of these basic functions and then applying them to more complex trigonometric expressions.

  • Exercise 12.2 Class 11 contains 11 Questions and Solutions.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 11 Chapter 12 - Limits and Derivatives

Exercise 12.2

1. Find the derivative of \[{x^2} - 2\]at $x = 10$

Ans: Let $f\left( x \right) = {x^2} - 2$

Accordingly,

$f'\left( 10 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 10+h \right)-f\left( 10 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {{{\left( {10 + h} \right)}^2} - 2} \right] - \left( {{{10}^2} - 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{{{10}^2} + \left( {2 \times 10 \times h} \right) + {h^2} - 2 - {{10}^2} + 2}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{20h + {h^2}}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {20 + h} \right) = 20 + 0 = 20$

Thus, the derivative of ${x^2} - 2$at $x = 10$is $20$


2. Find the derivative of $x$at $x = 1$

Ans: Let $f\left( x \right) = x$

Accordingly,

$f'\left( 1 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 1+h \right)-f\left( 1 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 + h} \right) - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{h}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( 1 \right) = 1$

Thus, the derivative of $x$at $x = 1$is $1$


3. Find the derivative of $99x$at $x = 100$

Ans: Let $f\left( x \right) = 99x$

Accordingly,

$f'\left( 100 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 100+h \right)-f\left( 100 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{99\left( {100 + h} \right) - \left( {99 \times 100} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {99 \times 100} \right) + 99h - \left( {99 \times 100} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{99h}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {99} \right) = 99$

Thus, the derivative of $99x$at $x = 100$is $99$


4. Find the derivative of the following functions using the first principle.

(i). ${x^3} - 27$

Ans: Let $f\left( x \right) = {x^3} - 27$

Accordingly, from the first principle,

     $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {{{\left( {x + h} \right)}^3} - 27} \right] - \left( {{x^3} - 27} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{{x^3} + {h^3} + 3{x^2}h + 3x{h^2} - {x^3}}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {{h^2} + 3{x^2} + 3xh} \right)$

$ \Rightarrow 0 + 3{x^2} + 0 = 3{x^2}$


(ii). $\left( {x - 1} \right)\left( {x - 2} \right)$

Ans: Let $f\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {x + h - 1} \right)\left( {x + h - 2} \right) - \left( {x - 1} \right)\left( {x - 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {{x^2} + hx - 2x + hx + {h^2} - 2h - x - h + 2} \right) - \left( {{x^2} - 2x - x + 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {hx + hx + {h^2} - 2h - h} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{2hx + {h^2} - 3h}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {2x + h - 3} \right) = 2x - 3$


(iii). $\frac{1}{{{x^2}}}$

Ans: Let $f\left( x \right) = \frac{1}{{{x^2}}}$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{{{\left( {x + h} \right)}^2}}} - \frac{1}{{{x^2}}}}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{{x^2} - {{\left( {x + h} \right)}^2}}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{{x^2} - {x^2} - 2hx - {h^2}}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - {h^2} - 2hx}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - {h^2} - 2x}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right] = \frac{{0 - 2x}}{{{x^2}{{\left( {x + 0} \right)}^2}}}$

$ \Rightarrow \frac{{ - 2}}{{{x^3}}}$


(iv). $\frac{{x + 1}}{{x - 1}}$

Ans: Let $f\left( x \right) = \frac{{x + 1}}{{x - 1}}$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {\frac{{x + h + 1}}{{x + h - 1}} - \frac{{x + 1}}{{x - 1}}} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\left( {x - 1} \right)\left( {x + h + 1} \right) - \left( {x + 1} \right)\left( {x + h - 1} \right)}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\left( {{x^2} + hx + x - x - h - 1} \right) - \left( {{x^2} + hx - x + x + h - 1} \right)}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2h}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - 2}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right] = \frac{{ - 2}}{{\left( {x - 1} \right)\left( {x - 1} \right)}}$

$ \Rightarrow \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}}$


5. For the function $f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1$prove that      $f'\left( 1 \right)=100f'\left( 0 \right)$

Ans: The given function is,

$f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1} \right]$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left( {\frac{{{x^{100}}}}{{100}}} \right) + \frac{d}{{dx}}\left( {\frac{{{x^{99}}}}{{99}}} \right) + ... + \frac{d}{{dx}}\left( {\frac{{{x^2}}}{2}} \right) + \frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( 1 \right)$

On using theorem $\frac{d}{{dx}}\left( {n{x^{n - 1}}} \right) = n{x^{n - 1}}$, we obtain

$\frac{d}{{dx}}f\left( x \right) = \frac{{100{x^{99}}}}{{100}} + \frac{{99{x^{98}}}}{{99}} + .... + \frac{{2x}}{2} + 1 + 0$

$\Rightarrow {x^{99}} + {x^{98}} + .... + x + 1$

$\therefore \text{ }f'\left( x \right)={{x}^{99}}+{{x}^{98}}+.....x+1$

At $x = 0,$

$f'\left( 0 \right)=1$

At $x = 1,$

$f'\left( 1 \right)={{1}^{99}}+{{1}^{98}}+....+1+1={{\left[ 1+1+....+1+1 \right]}_{100terms}}$

$\Rightarrow 1 \times 100 = 100$

Thus, $f'\left( 1 \right)=100f'\left( 0 \right)$


6. Find the derivative of ${x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}$ , where$a$ is some fixed real number.

Ans: Let$f\left( x \right) = {x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left( {{x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}} \right)$

$\Rightarrow \frac{{d\left( {{x^n}} \right)}}{{dx}} + a\frac{{d\left( {{x^{n - 1}}} \right)}}{{dx}} + {a^2}\frac{{d\left( {{x^{n - 2}}} \right)}}{{dx}} + .... + {a^{n - 1}}\frac{{d\left( x \right)}}{{dx}} + {a^n}\frac{{d\left( 1 \right)}}{{dx}}$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$

So, we obtain

\[f'\left( x \right)=n{{x}^{n-1}}+a\left( n-1 \right){{x}^{n-2}}+{{a}^{2}}\left( n-2 \right){{x}^{n-3}}+....+{{a}^{n-1}}+{{a}^{n}}\left( 0 \right)\]

$\therefore \text{ }f'\left( x \right)=n{{x}^{n-1}}+a\left( n-1 \right){{x}^{n-2}}+{{a}^{2}}\left( n-2 \right){{x}^{n-3}}+...+{{a}^{n-1}}$


7. For some constants $a$and $b$, find the derivative of the following functions.

(a). $\left( {x - a} \right)\left( {x - b} \right)$

Ans: Let $f\left( x \right) = \left( {x - a} \right)\left( {x - b} \right)$

$\Rightarrow f\left( x \right) = {x^2} - \left( {a - b} \right)x + ab$

$\therefore \text{ }f'\left( x \right)=\frac{d}{dx}\left( {{x}^{2}}-\left( a+b \right)x+ab \right)$

$\Rightarrow \frac{d}{{dx}}\left( {{x^2}} \right) - \left( {a + b} \right)\frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( {ab} \right)$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we obtain

$f'\left( x \right)=2x-\left( a+b \right)+0=2x-a-b$


(b). ${\left( {a{x^2} + b} \right)^2}$

Ans: Let, $f\left( x \right) = {\left( {a{x^2} + b} \right)^2}$

$\Rightarrow f\left( x \right) = {a^2}{x^4} + 2ab{x^2} + {b^2}$

$\therefore \text{ }f'\left( x \right)=\frac{d}{dx}\left( {{a}^{2}}{{x}^{4}}+2ab{{x}^{2}}+{{b}^{2}} \right)$

$\Rightarrow {a^2}\frac{d}{{dx}}\left( {{x^4}} \right) + 2ab\frac{d}{{dx}}\left( {{x^2}} \right) + \frac{d}{{dx}}{b^2}$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we obtain

$f'\left( x \right)={{a}^{2}}\left( 4{{x}^{3}} \right)+2ab\left( 2x \right)+{{b}^{2}}\left( 0 \right)$

$\Rightarrow 4{a^2}{x^3} + 4abx = 4ax\left( {a{x^2} + b} \right)$


(c). $\frac{{x - a}}{{x - b}}$

Ans: Let, $f\left( x \right) = \frac{{x - a}}{{x - b}}$

$\Rightarrow \text{ }f'\left( x \right)=\frac{d}{dx}\left( \frac{x-a}{x-b} \right)$

By quotient rule,

$f'\left( x \right)=\frac{\left( x-b \right)\frac{d}{dx}\left( x-a \right)-\left( x-a \right)\frac{d}{dx}\left( x-b \right)}{{{\left( x-b \right)}^{2}}}$

$\Rightarrow \frac{{\left( {x - b} \right) \times 1 - \left( {x - a} \right) \times 1}}{{{{\left( {x - b} \right)}^2}}}$

$\Rightarrow \frac{{x - b - x + a}}{{{{\left( {x - b} \right)}^2}}} = \frac{{a - b}}{{{{\left( {x - b} \right)}^2}}}$


8. Find the derivative of $\frac{{{x^n} - {a^n}}}{{x - a}}$for any constant $a$

Ans: Let $f\left( x \right) = \frac{{{x^n} - {a^n}}}{{x - a}}$

$\Rightarrow \text{ }f'\left( x \right)=\frac{d}{dx}\left( \frac{{{x}^{n}}-{{a}^{n}}}{x-a} \right)$

By quotient rule,

$f'\left( x \right)=\frac{\left( x-a \right)\frac{d}{dx}\left( {{x}^{n}}-{{a}^{n}} \right)-\left( {{x}^{n}}-{{a}^{n}} \right)\frac{d}{dx}\left( x-a \right)}{{{\left( x-a \right)}^{2}}}$

$\Rightarrow \frac{{\left( {x - a} \right)\left( {n{x^{n - 1}} - 0} \right) - \left( {{x^n} - {a^n}} \right)}}{{{{\left( {x - a} \right)}^2}}}$

$\Rightarrow \frac{{n{x^n} - an{x^{n - 1}} - {x^n} + {a^n}}}{{{{\left( {x - a} \right)}^2}}}$


9. Find the derivative of the following functions

(a). $2x - \frac{3}{4}$

Ans: Let $f\left( x \right) = 2x - \frac{3}{4}$

$f'\left( x \right)=\frac{d}{dx}\left( 2x-\frac{3}{4} \right)$

$\Rightarrow 2\frac{d}{{dx}}\left( x \right) - \frac{d}{{dx}}\left( {\frac{3}{4}} \right)$

$\Rightarrow 2 - 0 = 2$


(b). $\left( {5{x^3} + 3x - 1} \right)\left( {x - 1} \right)$

Ans: Let $f\left( x \right) = \left( {5{x^3} + 3x - 1} \right)\left( {x - 1} \right)$

By Leibnitz product rule,

\[f'\left( x \right)=\left( 5{{x}^{3}}+3x-1 \right)\frac{d}{dx}\left( x-1 \right)+\left( x-1 \right)\frac{d}{dx}\left( 5{{x}^{3}}+3x-1 \right)\]

$\Rightarrow \left( {\left( {5{x^3} + 3x - 1} \right) \times 1} \right) + \left( {x - 1} \right)\left( {5 \times 3{x^2} + 3 - 0} \right)$

$\Rightarrow \left( {5{x^3} + 3x - 1} \right) + \left( {x - 1} \right)\left( {15{x^2} + 3} \right)$

$\Rightarrow 5{x^3} + 3x - 1 + 15{x^3} + 3x - 15{x^2} - 3$

$\Rightarrow 20{x^3} - 15{x^2} + 6x - 4$


(c). ${x^{ - 3}}\left( {5 + 3x} \right)$

Ans: Let, $f\left( x \right) = {x^{ - 3}}\left( {5 + 3x} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^{ - 3}}\frac{d}{{dx}}\left( {5 + 3x} \right) + \left( {5 + 3x} \right)\frac{d}{{dx}}\left( {{x^{ - 3}}} \right)$

$\Rightarrow {x^{ - 3}}\left( {0 + 3} \right) + \left( {5 + 3x} \right)\left( {3{x^{ - 3 - 1}}} \right)$

$\Rightarrow 3{x^{ - 3}} + \left( {5 + 3x} \right)\left( { - 3{x^{ - 4}}} \right) = 3{x^{ - 3}} - 15{x^{ - 4}} - 9{x^{ - 3}}$

$\Rightarrow  - 6{x^{ - 3}} - 15{x^{ - 4}} =  - 3{x^{ - 3}}\left( {2 + \frac{5}{x}} \right) = \frac{{ - 3{x^{ - 3}}}}{x}\left( {2x + 5} \right)$

$\Rightarrow \frac{{ - 3}}{{{x^4}}}\left( {5 + 2x} \right)$


(d). ${x^5}\left( {3 - 6{x^{ - 9}}} \right)$

Ans: Let, $f\left( x \right) = {x^5}\left( {3 - 6{x^{ - 9}}} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^5}\frac{d}{{dx}}\left( {3 - 6{x^{ - 9}}} \right) + \left( {3 - 6{x^{ - 9}}} \right)\frac{d}{{dx}}{x^5}$

$\Rightarrow {x^5}\left\{ {0 - 6\left( { - 9} \right){x^{ - 9 - 1}}} \right\} + \left( {3 - 6{x^{ - 9}}} \right)\left( {5{x^4}} \right)$

$\Rightarrow {x^5}\left( {54{x^{ - 10}}} \right) + 15{x^4} - 30{x^{ - 5}} = 54{x^{ - 5}} + 15{x^4} - 30{x^{ - 5}}$

$\Rightarrow 24{x^{ - 5}} + 15{x^4} = 15{x^4} + \frac{{24}}{{{x^5}}}$


(e). ${x^{ - 4}}\left( {3 - 4{x^{ - 5}}} \right)$

Ans: Let $f\left( x \right) = {x^{ - 4}}\left( {3 - 4{x^{ - 5}}} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^{ - 4}}\frac{d}{{dx}}\left( {3 - 4{x^{ - 5}}} \right) + \left( {3 - 4{x^{ - 5}}} \right)\frac{d}{{dx}}\left( {{x^{ - 4}}} \right)$

$\Rightarrow {x^{ - 4}}\left\{ {0 - 4\left( { - 5} \right){x^{ - 5 - 1}}} \right\} + \left( {3 - 4{x^{ - 5}}} \right)\left( { - 4} \right){x^{ - 4 - 1}}$

$\Rightarrow {x^{ - 4}}\left( {20{x^{ - 6}}} \right) + \left( {3 - 4{x^{ - 5}}} \right)\left( { - 4{x^{ - 5}}} \right)$

$\Rightarrow 20{x^{ - 10}} - 12{x^{ - 5}} + 16{x^{ - 10}} = 36{x^{ - 10}} - 12{x^{ - 5}}$

$\Rightarrow \frac{{36}}{{{x^{10}}}} - \frac{{12}}{{{x^5}}}$


(f). $\frac{2}{{x + 1}} - \frac{{{x^2}}}{{3x - 1}}$

Ans: $f\left( x \right) = \frac{2}{{x + 1}} - \frac{{{x^2}}}{{3x - 1}}$

$f'\left( x \right) = \frac{d}{{dx}}\left( {\frac{2}{{x + 1}}} \right) - \frac{d}{{dx}}\left( {\frac{{{x^2}}}{{3x - 1}}} \right)$

By quotient rule,

$f'\left( x \right) = \left[ {\frac{{\left( {x + 1} \right)\frac{d}{{dx}}\left( 2 \right) - 2\frac{d}{{dx}}\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}}} \right] - \left[ {\frac{{\left( {3x - 1} \right)\frac{d}{{dx}}\left( {{x^2}} \right) - {x^2}\frac{d}{{dx}}\left( {3x - 1} \right)}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \left[ {\frac{{\left( {x + 1} \right)\left( 0 \right) - 2\left( 0 \right)}}{{{{\left( {x + 1} \right)}^2}}}} \right] - \left[ {\frac{{\left( {3x - 1} \right)\left( {2x} \right) - {x^2}\left( 3 \right)}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \left[ {\frac{{6{x^2} - 2x - 3{x^2}}}{{{{\left( {3x - 1} \right)}^2}}}} \right] = \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \left[ {\frac{{3{x^2} - 2x}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \frac{{x\left( {3x - 2} \right)}}{{{{\left( {3x - 1} \right)}^2}}}$


10. Find the derivative of $\cos x$from the first principle

Ans: Let $f\left( x \right) = \cos x$

Accordingly from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos \left( {x + h} \right) - \cos \left( x \right)}}{h}} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos x\cosh  - \sin x\sinh  - \cos x}}{h}} \right] = \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right)}}{h} - \frac{{\sin x\sinh }}{h}} \right]$

$\Rightarrow  - \cos x\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{1 - \cosh }}{h}} \right)} \right] - \sin x\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{\sinh }}{h}} \right)} \right]$

We know, $\mathop {\lim }\limits_{h \to 0} \frac{{1 - \cosh }}{h} = 0$ and $\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h} = 1$

$\Rightarrow f'\left( x \right) =  - \cos x \times 0 - \sin x \times 1$

$\therefore f'\left( x \right) =  - \sin x$


11. Find the derivative of the functions below:

(i). $\sin x\cos x$

Ans: Let $f\left( x \right) = \sin x\cos x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {x + h} \right)\cos \left( {x + h} \right) - \sin x\cos x}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\sin \left( {x + h} \right)\cos \left( {x + h} \right) - 2\sin x\cos x} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {\sin 2\left( {x + h} \right) - \sin 2x} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\cos \frac{{2x + 2h + 2x}}{2}.\sin \frac{{2x + 2h - 2x}}{2}} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\cos \frac{{4x + 2h}}{2}.\sin \frac{{2h}}{2}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {\cos \left( {2x + h} \right)\sinh } \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \cos \left( {2x + h} \right).\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}$

$\Rightarrow \cos \left( {2x + h} \right) \times 1 = \cos 2x$


(ii). $\sec x$

Ans: Let $f\left( x \right) = \sec x$

Accordingly, from the first principle

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\sec \left( {x + h} \right) - \sec x}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos \left( {x + h} \right)}} - \frac{1}{{\cos x}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\frac{{\left[ { - 2\sin \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\cos \left( {x + h} \right)}}$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}$

$\Rightarrow \frac{1}{{\cos x}} \times 1 \times \frac{{\sin x}}{{\cos x}} = \sec x\tan x$


(iii). $5\sec x + 4\cos x$

Ans: Let, 

$f\left( x \right) = 5\sec x + 4\cos x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \frac{{\lim }}{{h \to 0}}\frac{{5\sec \left( {x + h} \right) + 4\cos \left( {x + h} \right) - \left[ {5\sec x + 4\cos x} \right]}}{h}$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\sec \left( {x + h} \right) - \sec x} \right]}}{h} + 4\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\cos \left( {x + h} \right) - \cos x} \right]}}{h}$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos \left( {x + h} \right)}} - \frac{1}{{\cos x}}} \right] + 4\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {x + h} \right) - \cos x} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right] + 4\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos x\cosh  - \sin x\sinh  - \cos x} \right]$

$ \Rightarrow \frac{5}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right] + 4\left[ { - \cos x\mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 - \cos x} \right)}}{h} - \sin x\mathop {\lim \frac{{\sinh }}{h}}\limits_{h \to 0} } \right]$

$ \Rightarrow \frac{5}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\sin \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\cos \left( {x + h} \right)}} + 4\left[ { - \cos x\left( 0 \right) - \sin x\left( 1 \right)} \right]$

$ \Rightarrow \frac{5}{{\cos x}}\left[ {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right] - 4\sin x$

$ \Rightarrow \frac{5}{{\cos x}} \times \frac{{\sin x}}{{\cos x}} \times 1 - 4\sin x = 5\sec x\tan x - 4\sin x$


(iv). $\cos ecx$

Ans: Let $f\left( x \right) = \cos ecx$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\sin \left( {x + h} \right)}} - \frac{1}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x - \sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ { - \cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\sin x\sin \left( {x + h} \right)}}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {\frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right)\mathop {\lim }\limits_{\frac{h}{2} \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}$

$ \Rightarrow \left( {\frac{{ - \cos x}}{{\sin x\sin x}}} \right) \times 1 =  - \cos ecx\cot x$


(v). $3\cot x + 5\cos ecx$

Ans: Let $f\left( x \right) = 3\cot x + 5\cos ecx$

Accordingly, from the first principle

 $f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {3\cot \left( {x + h} \right) + 5\cos ec\left( {x + h} \right) - 3\cot x - 5\cos ecx} \right]$

\[ \Rightarrow 3\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cot \left( {x + h} \right) - \cot x} \right] + 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right]\,\,\,\,\,\,\,\,\,\,....\left( 1 \right)\]

Now, $\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cot \left( {x + h} \right) - \cot x} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos \left( {x + h} \right)}}{{\sin \left( {x + h} \right)}} - \frac{{\cos x}}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos \left( {x + h} \right)\sin x - \cos x\sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( {x - x - h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( { - h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}.\mathop {\lim }\limits_{h \to 0} \left[ {\frac{1}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow  - 1 \times \frac{1}{{\sin x\sin \left( {x + h} \right)}} = \frac{{ - 1}}{{{{\sin }^2}x}} =  - \cos e{c^2}x\,\,\,\,\,\,......(2)$

$\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\sin \left( {x + h} \right)}} - \frac{1}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x - \sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}}}{{\sin x\sin \left( {x + h} \right)}}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {\frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right)\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}} = \left( {\frac{{ - \cos x}}{{\sin x\sin x}}} \right).1$

$ \Rightarrow  - \cos ecx\cot x\,\,\,\,\,\,......(3)$

From (1), (2), and (3), we obtain

$f'\left( x \right) =  - 3\cos e{c^2}x - 5\cos ecx\cot x$


(vi). $5\sin x - 6\cos x + 7$

Ans: Let $f\left( x \right) = 5\sin x - 6\cos x + 7$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {5\sin \left( {x + h} \right) - 6\cos \left( {x + h} \right) + 7 - 5\sin x + 6\cos x - 7} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\sin \left( {x + h} \right) - \sin x} \right] - 6\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {x + h} \right) - \cos x} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\cos \left( {\frac{{x + h + x}}{2}} \right).\sin \left( {\frac{{x + h - x}}{2}} \right)} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos x\cosh  - \sin x\sinh  - \cos x}}{h}} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\cos \left( {\frac{{2x + h}}{2}} \right).\sin \left( {\frac{h}{2}} \right)} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right) - \sin x\sinh }}{h}} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right)}}{h} - \frac{{\sin x\sinh }}{h}} \right]$

$ \Rightarrow 5\left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\frac{{2x + h}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right] - 6\left[ { - \cos x\left( {\mathop {\lim }\limits_{h \to 0} \frac{{1 - \cosh }}{h}} \right) - \sin x\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}} \right)} \right]$

$ \Rightarrow 5\cos x.1 - 6\left[ {\left( { - \cos x} \right).\left( 0 \right) - \sin x.1} \right]$

$ \Rightarrow 5\cos x + 6\sin x$


(vii). $2\tan x - 7\sec x$

Ans: Let $f\left( x \right) = 2\tan x - 7\sec x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\tan \left( {x + h} \right) - 7\sec \left( {x + h} \right) - 2\tan x + 7\sec x}\right]$

  $ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\tan \left( {x + h} \right) - \tan x} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\sec \left( {x + h} \right) - \sec x} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \frac{{\sin x}}{{\cos x}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos ec\left( {x + h} \right)}} - \frac{1}{{\cos ecx}}} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x\sin \left( {x + h} \right) - \sin x\cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x + h - x}}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{\sinh }}{h}} \right)\frac{1}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}} \right)\left[ {\mathop {\lim }\limits_{h \to 0} \frac{1}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\frac{h}{2}}}} \right)\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right)$

$ \Rightarrow 2 \times 1 \times 1 \times \frac{1}{{\cos x\cos x}} - 7\left( {1 \times \frac{{\sin x}}{{\cos x\cos x}}} \right) = 2{\sec ^2}x - 7\sec x\tan x$


Conclusion

Class 11 Maths Exercise 12.2 Solutions has helped Students understand the concept of limits and how to find them for different functions. You already have practiced using techniques like factoring, rationalizing, and standard limit forms to determine the limit as the input gets close to a specific value. By learning these methods, students now have a good foundation in the basics of calculus. Class 11 Maths Limits and Derivatives Exercise 12.2 will help students understand complex topics as they move on to more advanced topics like derivatives and integrals.


Class 11 Maths Chapter 12: Exercises Breakdown

Exercise

Number of Questions

Exercise 12.1

32 Questions & Solutions

Miscellaneous Exercise

30 Questions & Solutions


CBSE Class 11 Maths Chapter 12 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

FAQs on NCERT Solutions for Class 11 Maths Chapter 12 - Limits and Derivatives Exercise 12.2

1. What does the Class 11 Maths Chapter 12 Exercise 12.2 deal with?

The Class 11 Maths Limits and Derivatives Exercise 12.2 in NCERT book deals with these topics on Derivatives:

  • Algebra of the derivative of functions.

  • Derivative of polynomials and trigonometric functions.

2. Does Vedantu provide solutions to Class 11 Maths Chapter 12 Exercise 12.2 of the NCERT textbook?

Yes, Vedantu, a leading ed-tech portal in India, provides solutions to Class 11 Maths Chapter 12 Exercise 12.2. These solutions are easily available for download on our website and mobile application for download. Students who solve the exercises and refer to NCERT Solutions gain the right amount of exposure and acquire good marks.


Not only Exercises 12.2 but also the subject matter experts at Vedantu provide solutions for all the exercises included in Chapter 12 of Class 11 Maths which are available on the website.

3. What are the advantages of using Vedantu’s Class 11 Maths Chapter 12 Exercise 12.2?

NCERT Solutions for Class 11 Maths Chapter 12 Ex 12.2 Limits and Derivatives are designed systematically. The solutions provided in a PDF format contain clarification for each concept and problem from the chapter. These NCERT Solutions are written by highly experienced educators or teachers from the relevant industry. They have written solutions to all the questions from Ex 12.2 in a comprehensive manner and lucid language. The solutions are set up in such a manner that a student can learn the marks weightage per question and identify where they need to allocate their time and energy.


These NCERT Solutions offered by Vedantu come in handy for Class 11 students so that they can hold command over the chapters and the subject very easily. So, there is nothing to worry about, all the quality study resources are available at your fingertips. Just click and download the solutions PDF and score the best possible marks in the exams.

4. How can I download the solutions to Class 11 Maths Chapter 12 Exercise 12.2 offered by Vedantu?

Downloading the solutions of Class 11 Maths Chapter 12 Exercise 12.2 offered by Vedantu is extremely easy and hassle-free. All you have to do is visit Vedantu’s official website (vedantu.com) or download the Vedantu app and then sign in to access your preferred study materials. Class 11 Maths Chapter 12 Exercise 12.2 solutions along with the other study materials have been provided in PDF format. Created by experienced experts, these study materials can be downloaded or accessed from the Vedantu app or website at any time at the student's convenience.

5. Where can I find NCERT Solutions for Exercise 12.2 of Chapter 12 of Class 11 Maths online?

Students face difficulty in finding NCERT solutions on the internet. To make it easier, Students can find the NCERT Solutions for Exercise 12.2 of Chapter 12 of Class 11 Maths on Vedantu easily.  Stepwise solutions have been provided for all the questions present in the exercise. The solutions are available in PDF format which the students can access either online or download for free. All the solutions are created by our expert teachers as per the CBSE guidelines.  These solutions are available free of cost on Vedantu(vedantu.com) and the mobile app.

6. Are NCERT Solutions for Limits and Derivatives Class 11 Exercise 12.2 helpful in the exam preparation?

Yes. The NCERT Solutions will help the students in their exam preparation as it will help them to improve their foundation in topics. These solutions will help the students to speed up their exam preparation and save time. Students can refer to these to check if their answers and steps are right or wrong. All the solutions are accurate and are explained in a detailed way helping the students to score high marks. They are framed by the subject experts of Vedantu. It will help in boosting the confidence level among students and increase the efficiency to solve difficult problems in a shorter duration.

7. Do NCERT Solutions for Limits and Derivatives Class 11 Exercise 12.2 help you to score well in the exam?

First, students should solve all the easy problems and then solve the complex problems. After completing the exercise, students will be able to know the areas in which they are facing difficulty and lagging. Students will be able to perform well in the exams by practising the problems numerous times. Our experts also provide shortcut tips to help the students to solve complex problems with easier methods. Regular practice will also increase the speed and accuracy of the students. Students can start practicing questions from exercise 12.2 class 11 maths to do well in their exams.

8. Why should I download Vedantu NCERT Solutions for Exercise 12.2 of Chapter 12 of Class 11 Maths?

The reasons why students should download the NCERT Solutions for Limits and Derivatives Class 11 Exercise 12.2 of Maths are that it is first of all framed by the experts of Vedantu. Apart from that, the CBSE board recommends the students refer to the NCERT textbooks which are one of the best study materials from the exam perspective. So, that is why NCERT Solutions plays a vital role as the answers to all the questions from the exercise are available in one place. The subject matter experts have provided answers in a detailed manner helping the students to score well in the exams.

9. Are NCERT Solutions for Exercise 12.2 of Chapter 12 of Class 11 Maths the best study material for the students during revision?

Yes, Vedantu NCERT Solutions for Exercise 12.2 of Chapter 12 of Class 11 Maths are the most reliable study resources for the students. It helps the students to learn and revise complex concepts easily. Every solution is provided with an explanation to make learning easier for the students. The experts have designed the stepwise solutions to encourage the analytical thinking approach among the students. During exam time, it will help them to save a lot of time by giving a quick revision of all the methods and formulas.

10. Why is understanding limits important in calculus?

Understanding limits is crucial in calculus because they form the foundation for defining derivatives and integrals, which are the primary concepts in calculus.

11. Can limits exist at points where the function is not defined?

Yes, as we studied in ​​Exercise 12.2 Class 11 Maths limits can exist at points where the function itself is not defined. The limit describes the behaviour of the function as it approaches that point, even if the function does not have a value at the point.

12. What is an indeterminate form explained in exercise 12.2 class 11 maths?

An indeterminate form is an expression that does not have a well-defined value, such as 0/0​ or ∞/∞​. Special techniques like factoring or rationalizing are needed to evaluate limits involving indeterminate forms.