Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

ffImage
banner

NCERT Solutions for Maths Class 11 Chapter 3 - Trigonometric Functions - Free PDF Download

NCERT Solutions for Maths Class 11 Chapter 3 - Trigonometric Functions aligned according to the latest CBSC Class 11 Maths Syllabus helps in understanding the relationships between the angles and sides of triangles. 3, Students will explore the core concepts of trigonometry, including various functions like sine, cosine, and tangent. These functions help you solve problems related to angles and distances in different contexts.

toc-symbolTable of Content
toggle-arrow


In this chapter, Students will learn how to use trigonometric identities, graphs of trigonometric functions, and their applications. The NCERT Solutions for Class 11 Maths provide detailed explanations and step-by-step solutions to help you grasp these concepts more effectively. These solutions are designed to make your learning process easier and more efficient, helping you to excel in your exams.


Access Exercise Wise NCERT Solutions for Chapter 3 Maths Class 11

Courses
Competitive Exams after 12th Science

Exercises under NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Exercise 3.1: In this exercise, students are introduced to trigonometric ratios of acute angles and their applications in solving problems related to heights and distances. The exercise covers basic concepts such as the definition of trigonometric ratios, Pythagoras theorem, and the concept of complementary angles.


Exercise 3.2: This exercise focuses on the evaluation of trigonometric ratios of special angles such as 0, 30, 45, 60, and 90 degrees. The exercise also includes the derivation of trigonometric ratios of 30, 45, and 60 degrees using the concept of the unit circle.


Exercise 3.3: This exercise covers the trigonometric ratios of angles between 0 and 90 degrees. The exercise includes problems on finding the values of trigonometric ratios using various techniques such as the use of Pythagoras theorem, the double-angle formula, and the half-angle formula.


Miscellaneous Exercise: This exercise includes a variety of problems that cover different topics such as the use of trigonometric ratios in solving real-life problems, the use of trigonometric identities to simplify expressions, and the solution of trigonometric equations. This exercise provides an opportunity for students to apply the concepts learned in the chapter to solve more complex problems.


Access NCERT Solution for Class 11 Maths Chapter 3 - Trigonometric Functions

Exercise 3.1

1. Find the radian measures corresponding to the following degree measures:

(i) 25o

Ans: We know that 180oπ  radian

Therefore  1=π180 radian 

hence, 

25o= π 180 × 25 radian  

      =π 36radian


(ii) -47o30  

Ans: Here we have,

  -47o30  =-4712o   

           =-952 degree

Since we know that, 180oπ  radian

Therefore  1o= π 180 radian 

Hence,

-952 degree= π 180 × (-952) radian

                  =(-1936 × 2) π   radian

                  =-1972 π radian

Therefore,

-47o30  =-1972 π  radian


(iii) 240o

Ans: We know that,

180oπ  radian

Therefore  1o= π 180 radian 

Hence,

240o= π 180 × 240 radian

       =43 π radian


(iv) 520o

Ans: We know that,

180oπ  radian

Therefore  1o= π 180 radian 

Hence,

520o= π 180 × 520 radian

       =26 π 9radian


2. Find the degree measures corresponding to the following radian measures

(Use π =227

(i) 1116

Ans: We know that,

  π  radian=180o

Therefore  1 radian =180 π o 

Hence,

1116 radian=180 π  × 1116 degree

              =45 × 11 π × 4degree

              =45 × 11 × 722 × 4 degree

              =3158degree

Further computing,

1116 radian=3938 degree

                =39o+× 608 minutes

Since 1o=60  

    1116 radian =39o+22  +12minutes

Since   =60'' 

1116 radian   =39o22  30''


(ii) -4

Ans: We know that,

 π  radian=180o

Therefore  1 radian =180 π o 

Hence,

-4 radian=180 π  × (-4) degree

                =180 × 7(-4)22degree

                =-252011 degree

                =-229111degree

Since 1o=60  

We have,

-4 radian=-229o+× 6011 minutes                        

               =-229o+5  +511 minutes

Since  =60   

-4 radian=-229o 27''


(iii) π 3

Ans: We know that,

 π  radian=180o

Therefore  1 radian =180 π o 

Hence,

π 3 radian=180 π  × π 3 degree

                 =300o


(iv)π 6

Ans: We know that,

 π radian=180o

Therefore  1 radian =180 π o 

Hence,

π 6 radian=180 π  × π 6

                 =210o


3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Ans: Number of revolutions the wheel makes in 1 minute=360

 Number of revolutions the wheel make in 1 second=36060

                                                                                   =6

In one complete revolution, the wheel turns an angle of π  radian.

Hence, it will turn an angle of × 2 π =12 π  radian, in 6 complete revolutions.

Therefore, the wheel turns an angle of 12 π  radian in one second.


4. Find the degree measure of the angle subtended at the centre of a circle of radius 100cm by an arc of length  22  cm.

(Use π =227

Ans: We know that,

 in a circle of radius r unit, if  an angle  θ  radian at the centre is subtended by an arc of length l unit then

 θ =lr                                ……(1)

Therefore, 

Substituting r=100cm ,l=22cm in the formula (1) , we have,

 θ =22100 radian

Since 1 radian=180 π  

Therefore,

  θ =180 π  × 22100 degree

     =180 × 7 × 2222 × 100degree

     =635 degree

    =1235degree

Since  1o=60   , we have,

 θ =12o36  

Hence , the required angle is 12o36  .


5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Ans: Given that, diameter of the circle=40 cm

 Hence Radius (r) of the circle=402cm

                                                   =20cm

Let AB be a chord  of the circle whose length is 20 cm.


a chord of the circle

             

In ΔOAB,

OA=OB 

     = Radius of the circle

     =20cm

Now also, AB=20cm

Therefore, ΔOAB is an equilateral triangle.

 θ =60o

     = π 3 radian

We know that,

 in a circle of radius r unit, if  an angle  θ  radian at the centre is subtended by an arc of length l unit then

 θ =lr                                ……(1)

Substituting  θ = π 3  in the formula (1),

        π 3=arc AB20

arc AB=20 π 3cm

Therefore, the length of the minor arc of the chord is 20 π 3cm .


6. If in two circles, arcs of the same length subtend angles 60o and 75o at the centre, find the ratio of their radii.

Ans: Let the radii of the two circles be r1 and r2 . Let an arc of length l1 subtends an angle of 60o at the centre of the circle of radius r1 , whereas let an arc of length l2 subtends an angle of 75o at the centre of the circle of radius r2 .

Now, we have,

60o= π 3 radian  and 

75=5π12 radian

We know that,

 in a circle of radius r unit, if  an angle  θ  radian at the centre is subtended by an arc of length l unit then

 θ =lr  

l=r θ           

Hence we obtain,                   

l=r1 π 3 

and  l=r2π 12

according to the l1=l2 

thus we have,

r1 π π =r2π 12

  r1=r254

 r1r2=54

Hence , the ratio of the radii is 5:4 .


7. Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length.

(i)  10 cm

Ans: We know that,

 in a circle of radius r unit, if  an angle  θ  radian at the centre is subtended by an arc of length l unit then

 θ =lr  

 Given that r=75cm

And here, l=10cm

Hence substituting the values in the formula,

 θ =1075 radian

  =215radian


(ii) 15 cm

Ans: We know that,

 in a circle of radius r unit, if  an angle  θ  radian at the centre is subtended by an arc of length l unit then

 θ =lr  

 Given that r=75cm

And here, l=15cm  

Hence substituting the values in the formula,

 θ =1575 radian

       =15radian


(iii) 21 cm

Ans: We know that,

 in a circle of radius r unit, if  an angle  θ  radian at the centre is subtended by an arc of length l unit then

 θ =lr  

And here, l=21cm

Hence substituting the values in the formula,

 θ =2175 radian

       =725radian


Exercise 3.2

1. Find the values of the other five trigonometric functions if  cos x=-12 , x lies in the third quadrant.

Ans: Here given that,  cos x=-12

Therefore we have,

sec x=1cos x

          =1(-12)

          =-2

Now we know that,sin2x+cos2x=1

Therefore we have, sin2x=1-cos2x

Substituting  cos x=-12 in the formula, we obtain,

sin2x=1-(-12)2

sin2x=1-14

            =34

   sin x= ± 32

Since x lies in the 3rdquadrant, the value of sinx will be negative.

sin x=-32

Therefore, cosec x=1sin x 

                            =1(-32) 

                            =-23 

Hence ,

 tan x=sin xcos x 

        =(-32)(-12)

        =3

And 

cot x=1tan x

       =13


2. Find the values of other five trigonometric functions if sin  x=35  , x lies in second quadrant.

Ans:

Here given that,  sin x=35

Therefore we have,

cosec x=1sin x

          =1(35)

           =53

Now we know that , sin2x+cos2x=1

Therefore we have, cos2x=1-sin2x

Substituting  sinx=35  in the formula, we obtain,

cos2x=1-(35)2

cos2x=1-925

         =1625 

   cos x= ± 45

Since x lies in the 2ndquadrant, the value of cosx will be negative.

cos x=-45

Therefore, secx=1cosx 

                          =1(-45) 

                          =-54 

Hence ,

 tanx=sinxcosx 

        =(35)(-45)

        =-34

And 

cotx=1tanx

        =-43



3. Find the values of other five trigonometric functions if   cot x=34 , x lies in third quadrant.

Ans: Here given that,  cotx=34

Therefore we have,

tanx=1cotx

       =1(34)

       =43

Now we know that , sec2x-tan2x=1

Therefore we have, sec2x=1+tan2x

Substituting  tan x=43  in the formula, we obtain,

sec2x=1+(43)2

sec2x=1+169

             =259 

   sec x= ± 53

Since x lies in the 3rdquadrant, the value of secx will be negative.

sec x=-53

Therefore, cosx=1secx 

                         =1(-53) 

                          =-35 

Now  , tan x=sin xcos x 

Therefore, sin x=tan xcos x 

 Hence we have, sin x=43 × (-35)   

                                    =(-45) 

 And 

cosec x=1sin x

          =-54


4. Find the values of other five trigonometric functions if sec  x=135  , x lies in fourth quadrant.

Ans: Here given that,  secx=135

Therefore we have,

cosx=1secx

        =1(135)

        =513

Now we know that , sec2x-tan2x=1

Therefore we have, tan2x=sec2x-1

Substituting  sec x=135  in the formula, we obtain,

tan2x=(135)2-1

tan2x=16925-1

         =14425 

   tanx= ± 125

Since x lies in the 4th quadrant, the value of tanx will be negative.

tan x=-125

Therefore, cot x=1tan x 

                          =-512 

Now  , tan x=sin xcos x 

Therefore, sin x=tan xcos x 

 Hence we have, sin x=513 × (-125)   

                                  =(-1213) 

 And 

cosec x=1sin x

            =-1312


5. Find the values of other five trigonometric functions if  tan x=-512 , x lies in second quadrant.

Ans: Here given that,  tan x=-512

Therefore we have,

cot x=1tan x

       =1(-512)

       =-125

Now we know that , sec2x-tan2x=1

Therefore we have, sec2x=1+tan2x

Substituting  tan x=-512  in the formula, we obtain,

sec2x=1+(-512)2

sec2x=1+25144

             =169144 

   sec x= ± 1312

Since x lies in the 2nd quadrant, the value of secx will be negative.

sec x=-1312

Therefore, cos x=1sec x 

                          =-1213 

Now  , tan x=sin xcos x 

Therefore, sin x=tan xcos x 

 Hence we have, sin x=(-512) × (-1213)   

                                    =(513) 

 And 

cosec x=1sin x

           =135


6. Find the value of the trigonometric function sin765o .

Ans: We know that the values of sinx repeat after an interval of 2π or 360 .

Therefore we can write,

sin765o=sin(× 360o+45o)

            =sin45o

            =12.


7. Find the value of the trigonometric function cosec(-1410o)  

Ans: We  know that the values of cosec x repeat after an interval of π  or 360 .

Therefore we can write,

           cosec(-1410o)=cosec(-1410o+4 × 360o)

                               =cosec(-1410o+1440o)

                               =cosec30o

                               =2 


8. Find the value of the trigonometric function  tan19 π 3 .

Ans: We know that the values of tan x repeat after an interval of  π  or 180.

Therefore we can write,

tan19 π 3=tan613 π 

            =tan(π + π 3)

            =tan π 3

            =3      


9. Find the value of the trigonometric function sin(-11 π 3) 

Ans: We know that the values of sin x repeat after an interval of π  or 360 .

Therefore we can write,

sin(-11 π 3)=sin(-11 π 3+2 × 2 π ) 

                   =sin( π 3)

                    =32


10. Find the value of the trigonometric function cot(-15 π 4) 

Ans: We  know that the values of cot x repeat after an interval of  π  or 180.

Therefore we can write,

cot(-15 π 4)=cot(-15 π 4+4 π ) 

                   =cot π 4

              =1


Exercise 3.3

1. Prove that sin2 π 6+cos2 π 3-tan2 π 4=-12

Ans: Substituting the values of  sin π 6,cos π 6,tan π 4 on left hand side,

sin2 π 6+cos2 π 3-tan2 π 4=(12)2+(12)2-(1)2

                                  =14+14-1

                                  =12

                                  = R.H.S.

Hence proved.


2. Prove that 2sin2 π 6+cosec2π 6cos2 π 3=32

Ans: Substituting the values of  sin π 6,cosecπ 6,cos π 3 on left hand side,

L.H.S.=2sin2 π 6+cosec2π 6cos2 π 3

           =2(12)2+cosec2( π + π 6)(12)2

           =2 × 14+(-cosec π 6)2(14)

          =12+(-2)2(14)

Since cosec x repeat its value after an interval of π 

we have, cosecπ 6=-cosec π 6  

L.H.S  =12+44

           =32 

          = R.H.S.

Hence proved.


3. Prove that cot2 π 6+cosecπ 6+3tan2 π 6=6

Ans: Substituting the values of  cot π 6,cosecπ 6,tan π 6 on left hand side,

L.H.S.=cot2 π 6+cosecπ 6+3tan2 π 6

           =(3)2+cosec( π - π 6)+3(13)2

         =3+cosec π 6+3 × 13

Since cosec x repeat its value after an interval of π 

we have, cosecπ 6=cosec π 6  

L.H.S =3+2+1 

          =1 

          = R.H.S.

Hence proved.


4. Prove that 2sin2π 4+2cos2 π 4+2sec2 π 3=10

Ans:

Substituting the values of  sinπ 4,cos π 4,sec π 3 on left hand side,

L.H.S.=2sin2π 4+2cos2 π 4+2sec2 π 3

           =2{sin( π - π 4)}2+2(12)2+2(2)2

           =2{sin π 4}2+2 × 12+8

Since sin x repeat its value after an interval of π 

we have, sinπ 4=sin π 4  

 L.H.S  =1+1+8 

            =10

            = R.H.S.

Hence proved.


5. Find the value of :

(i) sin75o

Ans: We have,

sin75o=sin(45o+30o)

          =sin45ocos30o+cos45osin30o

Since we know that, sin(x+y)=sin x cos y+cos x sin y 

Therefore we have,

Sin75o=12×32+12×12

Sin75o=3+122


(ii) tan15o

Ans: We have,

tan15o=tan(45o-30o)

        =tan45o-tan30o1+tan45otan30o

Since we know, tan(x-y)=tan x-tan y1+tan x tan y

Therefore we have,

tan15o=1-131+1(13)

           =3-133+13

         =3-13+1

         =(3-1)2(3+1)(3-1) 

Further computing we have,

tan15o=3+1-23(3)2-(1)2 

           =4-233-1

           =2-3


6. Prove that cos( π 4-x)cos( π 4-y)-sin( π 4-x)sin( π 4-y)=sin(x+y)

Ans: We know that, cos(x+y)=cos xcos y-sin xsin y 

cos( π 4-x)cos( π 4-y)-sin( π 4-x)sin( π 4-y)=cos[ π 4-x+ π 4-y]

=cos[ π 2-(x+y)]

=sin(x+y) 

L.H.S  = R.H.S.

Hence  proved.


7. Prove that tan( π 4+x)tan( π 4-x)=(1+tanx1-tanx)2

Ans: We  know that ,tan(A+B)=tan A+tan B1-tan Atan B

and tan(A-B)=tan A-tan B1+tan Atan B

L.H.S.=tan( π 4+x)tan( π 4-x)

Using the above formula,

          L.H.S=(tan π 4+tanx1-tan π 4tanx)tan π 4-tanx1+tan π 4tanx

                    =(1+tan x1-tan x)(1-tan x1+tan x)      [ substituting tan π 4=1 ]

                    =(1+tan x1-tan x)2

                    = R.H.S.

Hence proved.


8.  Prove that  cos( π +x)cos(-x)sin( π -x)cos( π 2+x)=cot2x

Ans: Observe that cos x repeats same value after an interval π  

and sin x repeats same value after an interval  π .

L.H.S.=cos( π +x)cos(-x)sin( π -x)cos( π 2+x)

           =[-cos x][cos x](sin x)(-sin x)

           =-cos2x-sin2x

           =cot2x

Hence proved.


9. Prove that,

Cos(π 2+x)Cos(π +x)[cot(π 2-x)+cot(π +x)]=1

Ans: We know that cot x  repeats same value after an interval 2π .

L.H.S.=Cos(3π2+x)Cos(2π+x)[cot(3π2x)+cot(2π+x)]

           =sin x cos x[tan x+cot x]

Substituting tan x=sin xcos x and

cot x=cos xsin x ,

L.H.S=sin xcos x(sin xcos x+cos xsin x)

         =(sin x cos x)[sin2x+cos2xsin x cos x]

         =1 

        = R.H.S.

Hence proved.


10. Prove that sin(n+1)xsin(n+2)x+cos (n+1)x cos (n+2)x=cos x

Ans: We know that , cos(x-y)=cosxcosy+sinxsiny 

L.H.S.=sin(n+1)xsin(n+2)x+cos (n+1)x cos (n+2)x

           =cos[(n+1)x-(n+2)x] 

           =cos(-x) 

           =cosx 

           =  R.H.S.


11. Prove that cos(π 4+x)-cos(π 4-x)=-2sinx

Ans: We  know that , cos A-cos B=-2sin(A+B2).sin(A-B2)

L.H.S.=cos(π 4+x)-cos(π 4-x)

               =-2sin{(π 4+x)+(π 4-x)2}.sin{(π 4+x)-(π 4-x)2}

               =-2sin(π 4)sin x 

Since sin x repeats the same value after an interval π 

we have, sin(π 4)=sin( π - π 4) 

therefore, 

L.H.S=-2sin π 4sin x 

           =-2 × 12 × sinx

           =-2sin x

           = R.H.S.

Hence proved.


12. Prove that sin26x-sin24x=sin 2x sin 10x

Ans: We know that,sinA+sinB=2sin(A+B2)cos(A-B2)

And sin A-sin B=2cos(A+B2)sin(A-B2)

L.H.S.=sin26x-sin24xa

               =(sin 6x+sin 4x)(sin 6x-sin 4x)

               =[2sin(6x+4x2)cos(6x-4x2)][2cos(6x+4x2).sin(6x-4x2)]

               =(2sin 5x cos x)(2cos 5x sin x)

Now we know that, sin 2x=2sin x cos x ,

Therefore we have,

L.H.S=(2sin 5x cos 5x)(2sin x cos x) 

          =sin 10x sin 2x

          = R.H.S.


13. Prove that cos22x-cos26x=sin 4x sin 8x

Ans: We  know that,

cos A+cos B=2cos(A+B2)cos(A-B2)

And cos A-cos B=-2sin(A+B2)sin(A-B2)

 L.H.S.=cos22x-cos26x

            =(cos 2x+cos 6x)(cos 2x-6x)

            =[2cos(2x+6x2)cos(2x-6x2)][-2sin(2x+6x2)sin(2x-6x2)]

Further computing, we have,

L.H.S=[2cos 4x cos(-2x)][-2sin 4xsin(-2x)]

         =[2cos  4x cos 2x][-2sin 4x(-sin 2x)]

         =(2sin 4x cos 4x)(2sin 2xcos 2x)

Now we know that, sin 2x=2sin x cos x 

Therefore we have,                

L.H.S=sin 8x sin 4x

         =  R.H.S.

.Hence proved.


14. Prove that sin 2x+2sin 4x+sin6=4cos2xsin 4x

Ans: We know that, sin A+sin B=2sin(A+B2)cos(A-B2)

L.H.S.=sin 2x+2sin 4x+sin 6x

.           =[sin 2x+sin 6x]+2sin 4x

           =[2sin(2x+6x2)cos(2x-6x2)]+2sin4x

           =2sin 4xcos(-2x)+2sin 4x

Further computing,

We have, L.H.S=2sin 4x cos 2x+2sin 4x 

                         =2sin 4x(cos 2x+1) 

Now we know that, cos 2x+1=2cos2x 

Therefore we have,

L.H.S=2sin 4x(2cos2x) 

         =4cos2xsin 4x

 = R.H.S.

Hence proved.


15. Prove that cot 4x(sin 5x+sin 3x)=cot x(sin 5x-sin 3x)

Ans: We know that, sin A+sin B=2sin(A+B2)cos(A-B2)

L.H.S.=cot 4x(sin 5x+sin 3x)

          =cot 4xsin 4x[2sin(5x+3x2)cos(5x+3x2)]

          =(cos 4xsin 4x)[2sin 4x cos x]

          =2cos 4x cos x

Now also ,we know that, sin A-sin B=2cos(A+B2)sin(A-B2)

 R.H.S.=cot x(sin 5x-sin 3x)

            =cos xsin x[2cos(5x+3x2)sin(5x-3x2)]


            =cos xsin x[2cos 4x sin x]

            =2cos 4x cos x

Therefore , we can conclude that,

L.H.S.=R.H.S.

Hence proved.


16. Prove that cos 9x-cos 5xsin 17x-sin 3x=-sin 2xcos 10x

Ans: We know that,

cos A-cos B=-2sin(A+B2)sin(A-B2)

And  sin A-sin B=2cos(A+B2)sin(A-B2)

 L.H.S.=cos 9x-cos 5xsin 17x-sin 3x

            =-2sin(9x+5x2).sin(9x-5x2)2cos(17x+3x2).sin(17x-3x2)                    (following the formula)

           

            =-2sin 7x.sin 2x2cos 10x.sin 7x

            =-sin 2xcos 10x 

            = R.H.S.

Hence proved.


17. Prove that:sin 5x+sin 3xcos 5x+cos 3x=tan 4x

Ans:

We  know that

sin A+sin B=2sin(A+B2)cos(A-B2),

cos A+cos B=2cos(A+B2)cos(A-B2)

Now , L.H.S.=sin 5x+sin 3xcos 5x+cos 3x

                      =2sin(5x+3x2)cos(5x-3x2)2cos(5x+3x2)cos(5x-3x2)                  (using the formula)

                      =2sin(5x+3x2)cos(5x-3x2)2cos(5x+3x2)cos(5x-3x2)

                      =2sin 4x cos x2cos 4x cos x

Further computing we have,

L.H.S=tan 4x 

          = R.H.S.

 

18. Prove that sin x-sin ycos x+cos y=tanx-y2

Ans: We  know that,

sin A-sin B=2cos(A+B2)sin(A-B2),

.cos A+cos B=2cos(A+B2)cos(A-B2)

  L.H.S.=sin x-sin ycosx+cosy

               =2cos(x+y2).sin(x-y2)2cos(x+y2).cos(x-y2)

               =sin(x-y2)cos(x-y2)

              =tan(x-y2)

Therefore L.H.S=R.H.S 

Hence proved.


19. Prove that sin x+sin 3xcos x+cos 3x=tan 2x

Ans: We  know that

sin A+sin B=2sin(A+B2)cos(A+B2),

.cos A+cos B=2cos(A+B2)cos(A-B2)

Now , L.H.S.=sinx+sin3xcos x+cos 3x

                      =2sin(x+3x2)cos(x-3x2)2cos(x+3x2)cos(x-3x2)                   (using the formula)

                      =sin 2xcos 2x

                      =tan 2x

Therefore  L.H.S= R.H.S.

Hence proved.


20. Prove that sin x-sin 3xsin2x-cos2x=2sin x

Ans: We know that,

sin A-sin B=2cos(A+B2)sin(A-B2)

And cos2A-sin2A=cos 2A

 L.H.S.=sin x-sin 3xsin2x-cos2x

       =2cos(x+3x2)sin(x-3x2)-cos2x

            =2cos2xsin(-x)-cos 2x

            =-2 × (-sinx)

Therefore , we have,

L.H.S=2sin x

        = R.H.S.

Hence proved.


21. Prove that cos 4x+cos 3x+cos 2xsin 4x+sin 3x+sin 2x=cot 3x

Ans: We know that,

cos A+cos B=2cos(A+B2)cos(A-B2)

And, sin A+sin B=2sin(A+B2)cos(A-B2)

Now, L.H.S.=cos 4x+cos 3x+cos 2xsin 4x+sin 3x+sin 2x

                     =(cos 4x+cos 2x)+cos 3x(sin4x+sin2x)+sin 3x

                     =2cos(4x+2x2)cos(4x-2x2)+cos3x2sin(4x+2x2)cos(4x-2x2)+sin 3x   (using the formulas)

                      =2cos 3x cos x+cos 3x2sin 3x cos x+sin 3x

Further computing, we obtain,

L.H.S=cos 3x(2cos x+1)sin 3x(2cos x+1) 

          =cot 3x 

          = R.H.S.

Hence proved.


22. Prove that cot x cot 2x-cot 2x cot 3x-cot 3x cot x=1

Ans:

We know that, cot(A+B)=cotAcotB-1cot A+cot B

Now , L.H.S.=cot xcot 2x-cot 2x cot 3x-cot 3x cot x

                      =cot x cot 2x-cot 3x(cot 2x+cot x)

                      =cot x cot 2x-cot(2x+x)(cot 2x+cot x)

                      =cot x cot 2x-[cot 2x cot x-1cot x+cot 2x](cot 2x+cot x)

Further computing we obtain,

L.H.S=cot x cot 2x-(cot 2x cot x-1) 

         =1

         = R.H.S.

Hence proved.


23. Prove that tan 4x=4tan x(1-tan2x)1-6tan2x+tan4x

Ans: We  know that tan 2A=2tan A1-tan2A

L.H.S.=tan 4x

           =tan2(2x)

           =2tan 2x1-tan2(2x)[using the formula]

           =(4tan x1-tan2x)[1-4tan2x(1-tan2x)2]

Further  computing, we obtain,

L.H.S =(4tan x1-tan2x)[(1-tan2x)24tan2x(1-tan2x)2]

          =4tan x(1-tan2x)1+tan4x-2tan2x-4tan2x

          =4tan x(1-tan2x)1-6tan2x+tan4x 

          = R.H.S.

Hence  proved.


24. Prove that cos 4x=1-8sin2xcos2x

Ans: We know that, cos 2x=1-2sin2x 

And sin 2x=2sin x cos x 

L.H.S.=cos 4x

           =cos 2(2x)

           =1-2sin22x

           =1-2(2sin x cos x)2

Further computing we get,

L.H.S=1-8sin2xcos2x 

          =R.H.S.

Hence  proved.


25. Prove that cos 6x=32xcos6x-48cos4x+18cos2x-1

Ans: We know that, cos 3A=4cos3A-3cosA

and  cos 2x=1-2sin2x

L.H.S.=cos 6x

           =cos 3(2x)

           =4cos32x-3cos 2x

           =4[(2cos2x-1)3-3(2cos2x-1)]

Further computing,

L.H.S=4[(2cos2x)3-(1)3-3(2cos2x)]-6cos2x+3

         =4[(2cos2x)3-(1)3-3(2cos2x)2+3(2cos2x)]-6cos2x+3

         =4[8cos6x-1-12cos4x+6cos2x]-6cos2x+3

         =32cos6x-48cos4x+18cos2x-1

Therefore we have,

L.H.S = R.H.S.

Hence  proved.


Miscellaneous Exercise

1. Prove that: 2cos π 13cosπ 13+cosπ 13+cosπ 13=0

Ans: We know that cos x+cos y=2cos(x+y2)cos(x-y2)

Now L.H.S.=2cos π 13cosπ 13+cosπ 13+cosπ 13

                    =2cos π 3cosπ 13+2cos(π 13+π 132)cos(π 13-π 132)       (using the formula)

                    =2cos π 13cosπ 13+2cosπ 13cos(π 13)

                    =2cos π 13cosπ 13+2cosπ 13cos( π 13)

Simplifying, 

L.H.S=2cos π 13[cosπ 13+cosπ 13]

         =2cos π 13[2cos(π 13+π 132)cosπ 13-π 132]

          =2cos π 13[2cos π 2cosπ 26]

Substituting cos π 2=0 , we get,

L.H.S=2cos π 13 × 2 × 0 × cosπ 26 

           =0

           =R.H.S

Hence proved.


2. Prove that: (sin 3x+sin x)sin x+(cos 3x-cos x)cos x=0

Ans:

We know that, sin x+sin y=2sin(x+y2)cos(x-y2) 

And  cos x-cos y=-2sin(x+y2)sin(x-y2) 

Now, 

L.H.S.=(sin 3x+sin x)sin x+(cos 3x-cos x)cos x

           =sin 3x sin x+sin2x+cos 3x cos x-cos2x    (using the formula)

           =cos 3x cos x+sin 3x sin x-(cos2x-sin2x)

  Simplifying  we get,       

L.H.S=cos(3x-x)-cos 2x

         =cos 2x-cos 2x

         =0

         =R.H.S.


3. Prove that: (cos x+cos y)2+(sin x-sin y)2=4cos2x+y2

Ans: We know that, cos(x+y)=cos x cos y-sin xsin y

and  L.H.S=(cos x+cos y)2+(sin x-sin y)2

                  =cos2x+cos2y+2cos x cos y+sin2x+sin2y-2sin x sin y

                 =(cos2x+sin2x)+(cos2y+sin2y)+2(cos x cos y-sin x sin y)

Simplifying and using the formula,

L.H.S=1+1+2cos(x+y) 

         =2[1+cos(x+y)] 

         =2[1+2cos2(x+y)2-1] 

 [since 2cos2(x+y)2-1=cos(x+y) ]

          =4cos2(x+y) 

Therefore  L.H.S= R.H.S

Hence proved.


4. Prove that:  (cos x-cos y)2+(sin x-sin y)2=4sin2x-y2 

Ans: We know that, cos(x-y)=cos x cos y+sin x sin y 

L.H.S.=(cos x-cos y)2+(sin x-sin y)2

           =cos2x+cos2y-2cos x cos y+sin2x+sin2y-2sin x sin y

           =(cos2x+sin2x)+(cos2y+sin2y)-2[cos x cos y+sin x sin y]

Simplifying and using the formula  we get,

         L.H.S =1+1-2[cos(x-y)]

                   =2[1-cos(x-y)]

                   =2[1-{1-2sin2(x-y2)}] 

[since  1-2sin2(x-y)2=cos(x-y) ]

                   =4sin2(x-y2) 

Therefore  L.H.S= R.H.S

Hence proved.


5. Prove that: sin x+sin 3x+sin 5x+sin 7x=4cos xcos 2xsin 4x

Ans: We  know  that sin A+sin B=2sin(A+B2).cos(A-B2)

L.H.S. =sin x+sin 3x+sin 5x+sin 7x

            =(sin x+sin 5x)+(sin 3x+sin 7x)      

Using the formula and simplifying,

          =2sin(x+5x2).cos(x-5x2)+2sin(3x+7x2)cos(3x-7x2)       

          =2cos 2x[sin 3x+sin 5x]

          =2cos 2x[2sin(3x+5x2).cos(3x-5x2)] 

          =2cos 2x[2sin 4x.cos(-x)] 

Therefore we have,

L.H.S=4cos 2x sin 4x cos x 

           =R.H.S


6. Prove that: (sin 7x+sin 5x)+(sin 9x+sin 3x)(cos 7x+cos 5x)+(cos 9x+cos 3x)=tan 6x

Ans: We  known that,

sinA+sinB=2sin(A+B2).cos(A-B2)

And cos A+cos B=2cos(A+B2).cos(A-B2)

L.H.S. =(sin 7x+sin 5x)+(sin9x+sin3x)(cos 7x+cos 5x)+(cos9x+cos3x)

Using the formula and simplifying,

          =[2sin(7x+5x2).cos(7x-5x2)]+[2sin(9x+3x2).cos(9x-3x2)][2cos(7x+5x2).cos(7x-5x2)]+[2cos(9x+3x2).cos(9x-3x2)]

          =[2sin 6x.cos x]+[2sin 6x.cos 3x][2cos 6x.cos x]+[2cos 6x.cos 6x]

          =2sin 6x[cos x+cos 3x]2cos 6x[cos x+cos 3x]

           =tan 6x

Therefore L.H.S= R.H.S

Hence  proved.


7. Prove that: 

sin 3x+sin 2x-sin x=4sin xcosx2cos3x2

Ans: We know that,

sin A+sin B=2sin(A+B2).cos(A-B2)

And  sin A-sin B=2sin(A-B2).cos(A+B2) 

L.H.S.=sin3x+sin2x-sinx

          =sin 3x+[2cos(2x+x2)sin(2x-x2)]

          =sin 3x+[2cos(3x2)sin(x2)]

Since we know that, sin 2x=2sin xcos x 

L.H.S=2sin3x2.cos3x2+2cos3x2sinx2

         =2cos(3x2)[sin(3x2)+sin(x2)]

         =2cos(3x2)[2sin{(3x2)+(x2)2}cos{(3x2)-(x2)2}]

          =2cos(3x2).2sin xcos(x2)

Therefore 

 L.H.S=4sin xcos(x2)cos(3x2)

          =R.H.S 


8.Find sinx2,cosx2 and tanx2 ,if tanx=-43 , x lies in 2nd quadrant.   

Ans: Here, x is in 2nd quadrant.

Therefore ,

  π 2π 

i.e,   π 4<x2< π 2

hence x2 lies in 1st quadrant.

Therefore, sinx2,cosx2 and tanx2 are positive.

 Given that tan x=-43

We know that, sec2x=1+tan2x

sec2x=1+tan2x

         =1+(-43)2 

         =259

As x is in 2nd quadrant, sec x is negative.

Therefore , secx=-53 

Then cos x=-35 

Now we know that, 2cos2x2=cos x+1 

Computing we get, 2cos2x2=25 

Hence cosx2=15 

Now we know that, sin2x+cos2x=1 

Therefore substituting cosx2=15 and computing ,

sinx2=25 

Hence ,

tanx2=sinx2cosx2 

          =2 

Thus, the respective values ofsinx2,cosx2,tanx2

are 255,55,2 .


9.Find sinx2,cosx2 and tanx2 ,if cosx=-13 , x lies in 3rd quadrant.   

Ans: Here, x is in 3rd quadrant.

Therefore ,

 π xπ 2

i.e,   π 2x2π 4

hence x2 lies in 2nd quadrant.

Therefore, cosx2 and tanx2 are negative and sinx2 is positive.

 Given that cos x=-13

Now we know that, 2cos2x2=cosx+1 

Computing we get, 2cos2x2=23 

Hence cosx2=-13 

Now we know that, sin2x+cos2x=1 

Therefore substituting cosx2=-13 and computing ,

sinx2=23 

Hence ,

tanx2=sinx2cosx2 

          =-2 

Thus, the respective values of sinx2,cosx2,tanx2

are  23,-13,-2.


10.Findsinx2,cosx2 and tanx2 ,if sin x=14 , x lies in 2nd quadrant.   

Ans: Here, x lies in 2nd quadrant.

Therefore ,

  π 2π 

i.e,   π 4<x2< π 2

hence  x2 lies in 1st quadrant.

Therefore, sinx2,cosx2 and tanx2 are positive.

 Given that sin x=14

Now we know that, sin2x+cos2x=1 

Therefore substituting sin x=14 and computing ,

cos x=-154 

since x lies in 2nd quadrant,  cos x is negative.

Now we know that, 2sin2x2=1-cos x 

Computing we get, 2sin2x2=1+154 

Hence sinx2=4+158 

Now we know that, sin2x+cos2x=1 

Therefore substituting sinx2=4+158 and computing ,

cosx2=4-158 

Hence ,

tanx2=sinx2cosx2 

          =4+154-15 

       =4+15 

Thus, the respective values of sinx2,cosx2,tanx2

are  4+158,4-158,4+15 .


NCERT Solutions for Class 11 Maths Chapter 3 Subtopics

Before wandering into the conceptual details of Trigonometric Functions Class 11, you can have a look at the summary of all topics discussed in this chapter.


Section 1: Introduction

In this part, students are introduced to fundamental trigonometric functions and their application. You will be required to perform calculations of distances based on these ratios.


Section 2: Angles

Class 11 Maths Trigonometry comes with four subsections under this topic. Students will learn about measurement of angles in different units, radians and degrees, and relations between them. Solutions to numerical sums involving the conversion of angle measurements from one form to another have been discussed in detail in NCERT Solutions for Class 11 Maths Chapter 3.


Section 3: Trigonometric Functions

This section deals with two topics. First one teaches the signs and symbols of generalised trigonometric functions in all four quadrants of a graph. In the next subsection, students will be acquainted with the domain and range of the different functions, that is, how the value of a function increases or decreases for an increasing angle value. You can find tables and detailed explanations on the working of these concepts in Trigonometric Functions Class 11 NCERT Solutions.


Section 4: Trigonometric Functions of Sum and Difference of Two Angles

The concluding section of Chapter 3 Maths Class 11 PDF focuses on the derivation of formulas and expressions based on trigonometric functions of the sums and differences between two angles. These formulas have been explained with the help of examples. Students must have a clear understanding of these as they make up an important part of geometric evaluations and are applied in a wide range of calculations.


Overview of Deleted Syllabus for CBSE Class 11 Maths Chapter - Trigonometric functions

Chapter

Dropped Topics

Trigonometric Functions

3.5 - Trigonometric Equations up to Exercise 3.4

Summary the last 5 points

3.6 -Proofs and Simple Applications of Sine and Cosine Formulae



Class 11 Maths Chapter 3: Exercises Breakdown

Exercise

Number of Questions

Exercise 3.1

7 Questions and Solutions 

Exercise 3.2

10 Questions and Solutions 

Exercise 3.3

25 Questions and Solutions




Conclusion

The Class 11 Maths Ch 3 , "Trigonometric Functions," covers essential concepts including trigonometric ratios, identities, and equations. It is vital for understanding advanced mathematics. Typically, 2-3 questions from this chapter appear in exams, focusing on applications and problem-solving involving these functions.


By Understanding of this chapter lays a strong foundation for future topics in calculus and analytical geometry. Practising a variety of problems is crucial for success in this chapter and in subsequent mathematical studies.


Other Study Material for CBSE Class 11 Maths Chapter 3



Chapter-Specific NCERT Solutions for Class 11 Maths 2024-25

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

1. What are the basic trigonometric functions?

In Mathematics, trigonometric functions are fundamental functions used to denote relation of the angles of a right-angled triangle to the length of its sides.


There are six trigonometric ratios in total, the basic three being sine, cosine, and tangent. The other three are described in relation to previously-discussed basic functions and are called cosecant, secant and cotangent.


In a given right-angled triangle, values of these ratios are calculated for a specific angle θ in terms of its sides in the following manner.


sin θ = opposite side / hypotenuse

cos θ = adjacent side / hypotenuse

tan θ = sin θ / cos θ = opposite site / adjacent side

cosec θ = 1 / sin θ

sec θ = 1 / cos θ

cot θ = cos θ / sin θ = 1 / tan θ

2. How are Radians and Degrees related?

A Radian (denoted by rad or c) is a standard unit of measuring angles whose value is based on the relationship between the length of an arc and radius of a circle.


rad = arc length / radius of circle


In a lot of cases, you might be required to convert given angle values in Radian into Degree. For that, the relation between these two units can be derived as follows.  


For a full circle with radius r and angle 360o, the arc length is equal to circumference C.


Therefore, arc length = C = 2πr.


From the first relation, 360o in radians will be

rad = 2πr / r = 2π

Therefore, 2π rad = 360o,

that is, 1 rad = 180o / π.

This brings us to the final relationship that is, degree = radian x 180 / π.

3. What can you learn from Trigonometry Class 11 NCERT Solutions PDF?

Chapter 3 Maths Class 11 covers the vast and complex topic of trigonometric functions and their applications. This chapter comes with a total of four subsections dealing with concepts like measuring angles in degrees and radians and their interconversion, sine and cosine formulas in terms of variable angles x and y, finding solutions of trigonometric values, and so on.


NCERT Solutions for Class 11 Maths Chapter 3 comes with comprehensive answers to questions from all four exercises given in textbooks. Solutions to numerical sums have been explained in a step-by-step manner. You will learn about the applications of trigonometric equations in the vast field of science and be able to recognise these functions in Physics and Chemistry.

4. How do you solve trigonometric functions in Class 11 Maths?

Trigonometry can be a tricky topic. However, the students who have a good grasp of the basics of trigonometry seem to solve the problems in a better way. The first thing to remember while solving the trigonometric functions is to know the formulae and their applications. Vedantu offers a complete guide and the PDF of the solutions of the exercise given in the NCERT textbook. The solutions are provided free of cost in a step-by-step manner and are easy to comprehend.

5. Is Chapter 3 of Class 11 Maths hard?

A lot of students may find Trigonometry difficult. However, if the concepts are clear and they have a good hold on the basics of Trigonometry, then it seems easy. As trigonometry is all about the relation between the angles and sides of the triangle, students need to know the basic formulae and their applications to solve the problems. Vedantu offers solutions that are verified by the subject-matter-expert and are also solved comprehensively. 

6. What are the important topics in Chapter 3 of Class 11 Maths?

In Class 11 Mathematics, Chapter 3 is all about trigonometry. This chapter includes all about the relation between the angles and the sides of the triangles and their applications. Whenever there is a need to solve the trigonometric functions, a student must have a good grasp of the identities and the formula. The value table of all the trigonometric functions for different angles must be remembered for solving problems. Vedantu offers the solution to all the exercises provided in the NCERT Textbook in a step-by-step manner. 

7. What is Trigonometry for Class 11 Students?

Trigonometry is a section of Mathematics, which provides an understanding of the relation between the angles and the sides of the triangle. This chapter can be tricky for most students. But, the students can ace their exams by practising numerous questions and knowing the formulae and their applications. Vedantu offers the best learning guide and the PDF of the solutions that are verified by the subject-matter-experts. Students can either refer to it online or by downloading the PDF for free to refer to it offline. 

8. How can Trigonometry of Class 11 be made easy to study?

Trigonometry seems difficult for most of the students. Few of the ways to make it easy is to always choose the side that is complex, denote or represent all the trigonometric functions into sine and cosine, focus on the formulae and the signs, and grasp the basics of cancelling the terms, rationalizing, and expanding. Vedantu offers an explanation based solution that is easy to follow and score. 

9. What are the applications of Trigonometry in real life?

As trigonometry involves the relationship between the sides and angles, finding the height, and calculating the distance, it has a wide range of applications in marine biology, navigation, aviation department, etc. It is also used in solving major mathematical calculations such as Calculus and Algebra. Vedantu provides a solution guide suitable for all the students with solutions that are verified by experienced experts. The solutions are available on both Vedantu’s website and its app at free of cost.

10. Is Trigonometry Class 11 PDF solutions important?

Understanding Trigonometry Class 11 PDF Solutions is crucial for several reasons:

  • Foundation for Higher Maths: Trigonometry is essential for success in calculus, complex numbers, and vectors.

  • Applications in Various Fields: Trigonometry has practical applications in physics, engineering, computer graphics, and navigation.

  • Develops Problem-Solving Skills: Studying trigonometry helps develop critical thinking and problem-solving skills.

  • Gateway to Further Exploration: Trigonometry can lead to more advanced mathematical topics with exciting real-world applications.

11. What is the main theorem of trigonometry?

The main theorem of Trigonometry Class 11 is not a single one, but there are a few fundamental identities that are incredibly important. Here are two of the most significant:

  • Pythagorean Identity: This identity relates the sine and cosine functions of an angle and is written as sin²(θ) + cos²(θ) = 1. It essentially states that in a right-angled triangle, the square of the sine (opposite side over hypotenuse) plus the square of the cosine (adjacent side over hypotenuse) will always equal 1. This identity is a direct extension of the Pythagorean Theorem applied to trigonometric ratios.

  • Unit Circle Definition: While not technically a theorem, the concept of the unit circle is crucial in trigonometry. It's a circle centered at the origin with a radius of 1. By associating angles with coordinates on this circle, we can define the sine, cosine, and tangent functions for any angle. This geometric representation helps visualize the relationships between the trigonometric functions and underpins many other trigonometric identities.

These two foundations (Pythagorean Identity and Unit Circle) form the basis for deriving other important trigonometric identities and solving trigonometric problems.

12. What are the functions of trigonometry?

Trigonometry isn't a single function, but a fascinating branch of mathematics that introduces a set of functions that unlock powerful connections between angles and the sides of right triangles. These functions, sine (sin), cosine (cos), and tangent (tan), along with their reciprocals, cotangent (cot), secant (sec), and cosecant (csc), play a vital role in various mathematical and scientific disciplines.


Imagine a right triangle. The sine function (sin) represents the ratio of the side opposite the angle (θ) to the triangle's hypotenuse (the longest side). The cosine function (cos) focuses on the adjacent side (the side next to the angle) relative to the hypotenuse. Finally, the tangent function (tan) relates the opposite side to the adjacent side. These functions provide a way to calculate missing side lengths or angles when some information is already known within a right triangle.

13. What are the symbols for trigonometry?

In Trigonometry class 11 solutions , we deal with functions that relate angles to the ratios of sides in right triangles. These functions have specific symbols for easy representation:

  • Sine: Represented by the symbol "sin"

  • Cosine: Represented by the symbol "cos"

  • Tangent: Represented by the symbol "tan"

  • Cotangent: Represented by the symbol "cot" (sometimes written as "cotang")

  • Secant: Represented by the symbol "sec"

  • Cosecant: Represented by the symbol "csc" (sometimes written as "cosec")

These symbols are typically followed by an opening parenthesis, then the angle in degrees or radians, and a closing parenthesis. For instance, sin(30°) represents the sine of a 30-degree angle.

14. What is the aim of trigonometric functions?

The aim of trigonometric functions is to establish relationships between the angles and sides of triangles.


These functions are essential for:

  • Triangle Solutions: They allow the calculation of unknown sides and angles in triangles, especially right triangles.

  • Modelling Periodic Behavior: Trigonometric functions describe repetitive patterns, such as sound waves, light waves, and tides, which are naturally periodic.

  • Studying Rotational Dynamics: They are key to understanding objects in circular or rotational motion, crucial in fields like physics and engineering.

  • Facilitating Calculus: Trigonometric functions play a significant role in calculus, particularly in dealing with integrals and derivatives of periodic functions.

  • Geometry Applications: They provide essential tools for solving geometric problems that involve angles and distances.

  • Fourier Analysis: They are fundamental in breaking down complex periodic functions into simpler sine and cosine components, important in signal processing and other applications.

In summary, trigonometric functions are vital in numerous disciplines, helping solve practical problems involving angles, distances, and periodic patterns.