Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 3 - Trigonometric Functions

ffImage
widget title icon
Latest Updates

widget icon
Enrol Now :
JEE Test Series
widget icon
Grab Your Seat :
JEE Pro Course
widget icon
Register Today :
JEE One to One Coaching

NCERT Solutions for Maths Class 11 Chapter 3 - Trigonometric Functions - Free PDF Download

NCERT Solutions for Maths Class 11 Chapter 3 - Trigonometric Functions aligned according to the latest CBSC Class 11 Maths Syllabus helps in understanding the relationships between the angles and sides of triangles. 3, Students will explore the core concepts of trigonometry, including various functions like sine, cosine, and tangent. These functions help you solve problems related to angles and distances in different contexts.

toc-symbol
Table of Content
1. NCERT Solutions for Maths Class 11 Chapter 3 - Trigonometric Functions - Free PDF Download
2. Glance on Maths Chapter 3 Class 11- Trigonometric Function
3. Access Exercise Wise NCERT Solutions for Chapter 3 Maths Class 11
4. Exercises under NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions
5. Access NCERT Solution for Class 11 Maths Chapter 3 - Trigonometric Functions
6. NCERT Solutions for Class 11 Maths Chapter 3 Subtopics
    6.1Section 1: Introduction
    6.2Section 2: Angles
    6.3Section 3: Trigonometric Functions
    6.4Section 4: Trigonometric Functions of Sum and Difference of Two Angles
7. Overview of Deleted Syllabus for CBSE Class 11 Maths Chapter - Trigonometric functions
8. Class 11 Maths Chapter 3: Exercises Breakdown
9. Other Study Material for CBSE Class 11 Maths Chapter 3
10. Chapter-Specific NCERT Solutions for Class 11 Maths 2024-25
FAQs


In this chapter, Students will learn how to use trigonometric identities, graphs of trigonometric functions, and their applications. The NCERT Solutions for Class 11 Maths provide detailed explanations and step-by-step solutions to help you grasp these concepts more effectively. These solutions are designed to make your learning process easier and more efficient, helping you to excel in your exams.


Glance on Maths Chapter 3 Class 11- Trigonometric Function

  • Introduction to Trigonometric Functions (Sine, Cosine, Tangent):  Delvers into the concept of these functions defined using right-angled triangles.

  • Relationships Between Trigonometric Functions: Learn how sine, cosine, and tangent are interrelated using formulas like $tan(\theta)$ = $sin(\theta) / cos(\theta)$.

  • Angles and Their Trigonometric Values: Understand how to find trigonometric values (sine, cosine, tangent) for different angles (using the unit circle or trigonometric tables).

  • Trigonometric Identities: Explore basic identities like $sin^2(\theta)$ + $cos^2(\theta)$ = 1 and their applications.

  • Applications of Trigonometry: See how trigonometry is used in solving real-world problems (may include heights and distances).

  • This article contains chapter notes, important questions, exemplar solutions and exercises for Chapter 3 - Trigonometric Function, which you can download as PDFs.

  • There are three exercises (52 fully solved questions) in Trigonometry Class 11 Solutions


Access Exercise Wise NCERT Solutions for Chapter 3 Maths Class 11

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Exercises under NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Exercise 3.1: In this exercise, students are introduced to trigonometric ratios of acute angles and their applications in solving problems related to heights and distances. The exercise covers basic concepts such as the definition of trigonometric ratios, Pythagoras theorem, and the concept of complementary angles.


Exercise 3.2: This exercise focuses on the evaluation of trigonometric ratios of special angles such as 0, 30, 45, 60, and 90 degrees. The exercise also includes the derivation of trigonometric ratios of 30, 45, and 60 degrees using the concept of the unit circle.


Exercise 3.3: This exercise covers the trigonometric ratios of angles between 0 and 90 degrees. The exercise includes problems on finding the values of trigonometric ratios using various techniques such as the use of Pythagoras theorem, the double-angle formula, and the half-angle formula.


Miscellaneous Exercise: This exercise includes a variety of problems that cover different topics such as the use of trigonometric ratios in solving real-life problems, the use of trigonometric identities to simplify expressions, and the solution of trigonometric equations. This exercise provides an opportunity for students to apply the concepts learned in the chapter to solve more complex problems.


Access NCERT Solution for Class 11 Maths Chapter 3 - Trigonometric Functions

Exercise 3.1

1. Find the radian measures corresponding to the following degree measures:

(i) $\text{2}{{\text{5}}^{\text{o}}}$

Ans: We know that $\text{18}{{\text{0}}^{\text{o}}}\text{= }\!\!\pi\!\!\text{ }$ radian

Therefore  ${{1}^{\circ }}=\dfrac{\pi }{180}$ radian 

hence, 

$\text{2}{{\text{5}}^{\text{o}}}\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{180}}\text{ }\!\!\times\!\!\text{ 25}$ radian  

      $\text{=}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{36}}$radian


(ii) $\text{-4}{{\text{7}}^{\text{o}}}\text{30 }\!\!'\!\!\text{ }$

Ans: Here we have,

  $\text{-4}{{\text{7}}^{\text{o}}}\text{30 }\!\!'\!\!\text{ =-47}{{\dfrac{\text{1}}{\text{2}}}^{\text{o}}}$   

           $\text{=-}\dfrac{\text{95}}{\text{2}}$ degree

Since we know that, $\text{18}{{\text{0}}^{\text{o}}}\text{= }\!\!\pi\!\!\text{ }$ radian

Therefore  ${{\text{1}}^{\text{o}}}\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{180}}$ radian 

Hence,

$\text{-}\dfrac{\text{95}}{\text{2}}$ degree$\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{180}}\text{ }\!\!\times\!\!\text{ }\left( \dfrac{\text{-95}}{\text{2}} \right)$ radian

                  $\text{=}\left( \dfrac{\text{-19}}{\text{36 }\!\!\times\!\!\text{ 2}} \right)\text{ }\!\!\pi\!\!\text{ }$  radian

                  $\text{=}\dfrac{\text{-19}}{\text{72}}\text{ }\!\!\pi\!\!\text{ }$radian

Therefore,

$\text{-4}{{\text{7}}^{\text{o}}}\text{30 }\!\!'\!\!\text{ =-}\dfrac{\text{19}}{\text{72}}\text{ }\!\!\pi\!\!\text{ }$ radian


(iii) $\text{24}{{\text{0}}^{\text{o}}}$

Ans: We know that,

$\text{18}{{\text{0}}^{\text{o}}}\text{= }\!\!\pi\!\!\text{ }$ radian

Therefore  ${{\text{1}}^{\text{o}}}\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{180}}$ radian 

Hence,

$\text{24}{{\text{0}}^{\text{o}}}\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{180}}\text{ }\!\!\times\!\!\text{ 240}$ radian

       $\text{=}\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }$radian


(iv) $\text{52}{{\text{0}}^{\text{o}}}$

Ans: We know that,

$\text{18}{{\text{0}}^{\text{o}}}\text{= }\!\!\pi\!\!\text{ }$ radian

Therefore  ${{\text{1}}^{\text{o}}}\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{180}}$ radian 

Hence,

$\text{52}{{\text{0}}^{\text{o}}}\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{180}}\text{ }\!\!\times\!\!\text{ 520}$ radian

       $\text{=}\dfrac{\text{26 }\!\!\pi\!\!\text{ }}{\text{9}}$radian


2. Find the degree measures corresponding to the following radian measures

(Use$\text{ }\!\!\pi\!\!\text{ =}\dfrac{\text{22}}{\text{7}}$ ) 

(i) $\dfrac{\text{11}}{\text{16}}$

Ans: We know that,

 $\text{ }\!\!\pi\!\!\text{ }$ radian$\text{=18}{{\text{0}}^{\text{o}}}$

Therefore  $\text{1 radian =}{{\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}}^{\text{o}}}$ 

Hence,

$\dfrac{\text{11}}{\text{16}}$ radian$\text{=}\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{11}}{\text{16}}$ degree

              $\text{=}\dfrac{\text{45 }\!\!\times\!\!\text{ 11}}{\text{ }\!\!\pi\!\!\text{  }\!\!\times\!\!\text{ 4}}$degree

              \[\text{=}\dfrac{\text{45 }\!\!\times\!\!\text{ 11 }\!\!\times\!\!\text{ 7}}{\text{22 }\!\!\times\!\!\text{ 4}}\] degree

              $\text{=}\dfrac{\text{315}}{\text{8}}$degree

Further computing,

$\dfrac{\text{11}}{\text{16}}$ radian$\text{=39}\dfrac{\text{3}}{\text{8}}$ degree

                $\text{=3}{{\text{9}}^{\text{o}}}\text{+}\dfrac{\text{3 }\!\!\times\!\!\text{ 60}}{\text{8}}$ minutes

Since ${{\text{1}}^{\text{o}}}\text{=60 }\!\!'\!\!\text{ }$

    $\dfrac{\text{11}}{\text{16}}$ radian $\text{=3}{{\text{9}}^{\text{o}}}\text{+22 }\!\!'\!\!\text{ +}\dfrac{\text{1}}{\text{2}}$minutes

Since  $\text{1 }\!\!'\!\!\text{ =60''}$ 

$\dfrac{\text{11}}{\text{16}}$ radian$\text{ }\!\!~\!\!\text{ =3}{{\text{9}}^{\text{o}}}\text{22 }\!\!'\!\!\text{ 30''}$


(ii) $\text{-4}$

Ans: We know that,

$\text{ }\!\!\pi\!\!\text{ }$ radian$\text{=18}{{\text{0}}^{\text{o}}}$

Therefore  $\text{1 radian =}{{\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}}^{\text{o}}}$ 

Hence,

$\text{-4}$ radian$\text{=}\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}\text{ }\!\!\times\!\!\text{ }\left( \text{-4} \right)$ degree

                $\text{=}\dfrac{\text{180 }\!\!\times\!\!\text{ 7}\left( \text{-4} \right)}{\text{22}}$degree

                $\text{=}\dfrac{\text{-2520}}{\text{11}}$ degree

                $\text{=-229}\dfrac{\text{1}}{\text{11}}$degree

Since ${{\text{1}}^{\text{o}}}\text{=60 }\!\!'\!\!\text{ }$

We have,

$\text{-4}$ radian$\text{=-22}{{\text{9}}^{\text{o}}}\text{+}\dfrac{\text{1 }\!\!\times\!\!\text{ 60}}{\text{11}}$ minutes                        

               $\text{=-22}{{\text{9}}^{\text{o}}}\text{+5 }\!\!'\!\!\text{ +}\dfrac{\text{5}}{\text{11}}$ minutes

Since $\text{1 }\!\!'\!\!\text{ =60 }\!\!'\!\!\text{  }\!\!'\!\!\text{ }$

$\text{-4}$ radian$\text{=-22}{{\text{9}}^{\text{o}}}\text{5 }\!\!'\!\!\text{ 27''}$


(iii) $\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{3}}$

Ans: We know that,

$\text{ }\!\!\pi\!\!\text{ }$ radian$\text{=18}{{\text{0}}^{\text{o}}}$

Therefore  $\text{1 radian =}{{\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}}^{\text{o}}}$ 

Hence,

$\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{3}}$ radian$\text{=}\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{3}}$ degree

                 $\text{=30}{{\text{0}}^{\text{o}}}$


(iv)$\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$

Ans: We know that,

 $\pi $ radian$\text{=18}{{\text{0}}^{\text{o}}}$

Therefore  $\text{1 radian =}{{\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}}^{\text{o}}}$ 

Hence,

$\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$ radian$\text{=}\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$

                 $\text{=21}{{\text{0}}^{\text{o}}}$


3. A wheel makes $\text{360}$ revolutions in one minute. Through how many radians does it turn in one second?

Ans: Number of revolutions the wheel makes in $\text{1}$ minute$\text{=360}$

 Number of revolutions the wheel make in $\text{1}$ second$\text{=}\dfrac{\text{360}}{\text{60}}$

                                                                                   $\text{=6}$

In one complete revolution, the wheel turns an angle of \[\text{2 }\!\!\pi\!\!\text{ }\] radian.

Hence, it will turn an angle of $\text{6 }\!\!\times\!\!\text{ 2 }\!\!\pi\!\!\text{ =12 }\!\!\pi\!\!\text{ }$ radian, in $\text{6}$ complete revolutions.

Therefore, the wheel turns an angle of $\text{12 }\!\!\pi\!\!\text{ }$ radian in one second.


4. Find the degree measure of the angle subtended at the centre of a circle of radius $\text{100}$cm by an arc of length  $\text{22}$  cm.

(Use$\text{ }\!\!\pi\!\!\text{ =}\dfrac{\text{22}}{\text{7}}$ ) 

Ans: We know that,

 in a circle of radius $\text{r}$ unit, if  an angle $\text{ }\!\!\theta\!\!\text{ }$ radian at the centre is subtended by an arc of length $\text{l}$ unit then

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{l}}{\text{r}}$                                ……(1)

Therefore, 

Substituting $\text{r=100cm}$ ,\[\text{l=22cm}\] in the formula (1) , we have,

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{22}}{\text{100}}$ radian

Since $\text{1 radian=}\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}$ 

Therefore,

 $\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{180}}{\text{ }\!\!\pi\!\!\text{ }}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{22}}{\text{100}}$ degree

     $\text{=}\dfrac{\text{180 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 22}}{\text{22 }\!\!\times\!\!\text{ 100}}$degree

     $\text{=}\dfrac{\text{63}}{\text{5}}$ degree

    $\text{=12}\dfrac{\text{3}}{\text{5}}$degree

Since  ${{\text{1}}^{\text{o}}}\text{=60 }\!\!'\!\!\text{ }$ , we have,

$\text{ }\!\!\theta\!\!\text{ =1}{{\text{2}}^{\text{o}}}\text{36 }\!\!'\!\!\text{ }$

Hence , the required angle is $\text{1}{{\text{2}}^{\text{o}}}\text{36 }\!\!'\!\!\text{ }$.


5. In a circle of diameter $\text{40}$ cm, the length of a chord is $\text{20}$ cm. Find the length of minor arc of the chord.

Ans: Given that, diameter of the circle$=40$ cm

 Hence Radius $\left( r \right)$ of the circle$=\dfrac{40}{2}cm$

                                                   $=20cm$

Let $\text{AB}$ be a chord  of the circle whose length is $20$ cm.


a chord of the circle

             

In $\Delta \text{OAB,}$

$\text{OA=OB}$ 

     $=$ Radius of the circle

     $\text{=20cm}$

Now also, $\text{AB=20cm}$

Therefore, $\Delta \text{OAB}$ is an equilateral triangle.

\[\therefore \text{ }\!\!\theta\!\!\text{ =6}{{\text{0}}^{\text{o}}}\]

     $\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ radian

We know that,

 in a circle of radius $\text{r}$ unit, if  an angle $\text{ }\!\!\theta\!\!\text{ }$ radian at the centre is subtended by an arc of length $\text{l}$ unit then

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{l}}{\text{r}}$                                ……(1)

Substituting $\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$  in the formula (1),

       $\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{=}\dfrac{\text{arc AB}}{\text{20}}$

$\text{arc AB=}\dfrac{\text{20 }\!\!\pi\!\!\text{ }}{\text{3}}\text{cm}$

Therefore, the length of the minor arc of the chord is $\dfrac{\text{20 }\!\!\pi\!\!\text{ }}{\text{3}}\text{cm}$ .


6. If in two circles, arcs of the same length subtend angles $\text{6}{{\text{0}}^{\text{o}}}$ and $\text{7}{{\text{5}}^{\text{o}}}$ at the centre, find the ratio of their radii.

Ans: Let the radii of the two circles be ${{\text{r}}_{\text{1}}}$ and ${{\text{r}}_{\text{2}}}$ . Let an arc of length ${{\text{l}}_{\text{1}}}$ subtends an angle of $\text{6}{{\text{0}}^{\text{o}}}$ at the centre of the circle of radius ${{\text{r}}_{\text{1}}}$ , whereas let an arc of length ${{\text{l}}_{\text{2}}}$ subtends an angle of $\text{7}{{\text{5}}^{\text{o}}}$ at the centre of the circle of radius ${{\text{r}}_{\text{2}}}$ .

Now, we have,

$\text{6}{{\text{0}}^{\text{o}}}\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ radian  and 

${{75}^{\circ }}=\dfrac{5\pi }{12}$ radian

We know that,

 in a circle of radius $\text{r}$ unit, if  an angle $\text{ }\!\!\theta\!\!\text{ }$ radian at the centre is subtended by an arc of length $\text{l}$ unit then

\[\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{l}}{\text{r}}\]  

$\text{l=r }\!\!\theta\!\!\text{ }$          

Hence we obtain,                   

$\text{l=}\dfrac{{{\text{r}}_{\text{1}}}\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ 

and  $\text{l=}\dfrac{{{\text{r}}_{\text{2}}}\text{5 }\!\!\pi\!\!\text{ }}{\text{12}}$

according to the ${{\text{l}}_{\text{1}}}\text{=}{{\text{l}}_{\text{2}}}$ 

thus we have,

$\dfrac{{{\text{r}}_{\text{1}}}\text{ }\!\!\pi\!\!\text{ }}{\text{3 }\!\!\pi\!\!\text{ }}\text{=}\dfrac{{{\text{r}}_{\text{2}}}\text{5 }\!\!\pi\!\!\text{ }}{\text{12}}$

  ${{\text{r}}_{\text{1}}}\text{=}\dfrac{{{\text{r}}_{\text{2}}}\text{5}}{\text{4}}$

 $\dfrac{{{\text{r}}_{\text{1}}}}{{{\text{r}}_{\text{2}}}}\text{=}\dfrac{\text{5}}{\text{4}}$

Hence , the ratio of the radii is $\text{5:4}$ .


7. Find the angle in radian through which a pendulum swings if its length is $\text{75}$ cm and the tip describes an arc of length.

(i)  $\text{10}$ cm

Ans: We know that,

 in a circle of radius $\text{r}$ unit, if  an angle $\text{ }\!\!\theta\!\!\text{ }$ radian at the centre is subtended by an arc of length $\text{l}$ unit then

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{l}}{\text{r}}$  

 Given that $\text{r=75cm}$

And here, $\text{l=10cm}$

Hence substituting the values in the formula,

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{10}}{\text{75}}$ radian

  $\text{=}\dfrac{\text{2}}{\text{15}}$radian


(ii) $\text{15}$ cm

Ans: We know that,

 in a circle of radius $\text{r}$ unit, if  an angle $\text{ }\!\!\theta\!\!\text{ }$ radian at the centre is subtended by an arc of length $\text{l}$ unit then

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{l}}{\text{r}}$  

 Given that $\text{r=75cm}$

And here, $\text{l=15cm}$  

Hence substituting the values in the formula,

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{15}}{\text{75}}$ radian

       $\text{=}\dfrac{\text{1}}{\text{5}}$radian


(iii) $\text{21}$ cm

Ans: We know that,

 in a circle of radius $\text{r}$ unit, if  an angle $\text{ }\!\!\theta\!\!\text{ }$ radian at the centre is subtended by an arc of length $\text{l}$ unit then

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{l}}{\text{r}}$  

And here, $\text{l=21cm}$

Hence substituting the values in the formula,

$\text{ }\!\!\theta\!\!\text{ =}\dfrac{\text{21}}{\text{75}}$ radian

       $\text{=}\dfrac{\text{7}}{\text{25}}$radian


Exercise 3.2

1. Find the values of the other five trigonometric functions if  $\text{cos x=-}\dfrac{\text{1}}{\text{2}}$ , $x$ lies in the third quadrant.

Ans: Here given that,  $\text{cos x=-}\dfrac{\text{1}}{\text{2}}$

Therefore we have,

$\text{sec x=}\dfrac{\text{1}}{\text{cos x}}$

          $\text{=}\dfrac{\text{1}}{\left( \text{-}\dfrac{\text{1}}{\text{2}} \right)}$

          $\text{=-2}$

Now we know that,$\text{si}{{\text{n}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{x=1}$

Therefore we have, $\text{si}{{\text{n}}^{\text{2}}}\text{x=1-co}{{\text{s}}^{\text{2}}}\text{x}$

Substituting  $\text{cos x=-}\dfrac{\text{1}}{\text{2}}$ in the formula, we obtain,

$\text{si}{{\text{n}}^{\text{2}}}\text{x=1-}{{\left( \text{-}\dfrac{\text{1}}{\text{2}} \right)}^{\text{2}}}$

$\text{si}{{\text{n}}^{\text{2}}}\text{x=1-}\dfrac{\text{1}}{\text{4}}$

            $\text{=}\dfrac{\text{3}}{\text{4}}$

   $\text{sin x= }\!\!\pm\!\!\text{ }\dfrac{\sqrt{\text{3}}}{\text{2}}$

Since $\text{x}$ lies in the ${{\text{3}}^{\text{rd}}}$quadrant, the value of $\sin x$ will be negative.

$\text{sin x=-}\dfrac{\sqrt{\text{3}}}{\text{2}}$

Therefore, $\text{cosec x=}\dfrac{\text{1}}{\text{sin x}}$ 

                            $\text{=}\dfrac{\text{1}}{\left( \text{-}\dfrac{\sqrt{\text{3}}}{\text{2}} \right)}$ 

                            $\text{=-}\dfrac{\text{2}}{\sqrt{\text{3}}}$ 

Hence ,

 $\text{tan x=}\dfrac{\text{sin x}}{\text{cos x}}$ 

        $\text{=}\dfrac{\left( \text{-}\dfrac{\sqrt{\text{3}}}{\text{2}} \right)}{\left( \text{-}\dfrac{\text{1}}{\text{2}} \right)}$

        $\text{=}\sqrt{\text{3}}$

And 

$\text{cot x=}\dfrac{\text{1}}{\text{tan x}}$

       $\text{=}\dfrac{\text{1}}{\sqrt{\text{3}}}$


2. Find the values of other five trigonometric functions if $\text{sin  x=}\dfrac{\text{3}}{\text{5}}$  , $\text{x}$ lies in second quadrant.

Ans:

Here given that,  $\text{sin x=}\dfrac{\text{3}}{\text{5}}$

Therefore we have,

$\text{cosec x=}\dfrac{\text{1}}{\text{sin x}}$

          $=\dfrac{1}{\left( \dfrac{3}{5} \right)}$

           $=\dfrac{5}{3}$

Now we know that , ${{\sin }^{2}}x+{{\cos }^{2}}x=1$

Therefore we have, $\text{co}{{\text{s}}^{\text{2}}}\text{x=1-si}{{\text{n}}^{\text{2}}}\text{x}$

Substituting  $\sin x=\dfrac{3}{5}$  in the formula, we obtain,

$\text{co}{{\text{s}}^{\text{2}}}\text{x=1-}{{\left( \dfrac{\text{3}}{\text{5}} \right)}^{\text{2}}}$

$\text{co}{{\text{s}}^{\text{2}}}\text{x=1-}\dfrac{\text{9}}{\text{25}}$

         $\text{=}\dfrac{\text{16}}{\text{25}}$ 

   $\text{cos x= }\!\!\pm\!\!\text{ }\dfrac{\text{4}}{\text{5}}$

Since $x$ lies in the ${{2}^{nd}}$quadrant, the value of $\cos x$ will be negative.

$\text{cos x=-}\dfrac{\text{4}}{\text{5}}$

Therefore, $sec x=\dfrac{1}{\cos x}$ 

                          $\text{=}\dfrac{\text{1}}{\left( \text{-}\dfrac{\text{4}}{\text{5}} \right)}$ 

                          $\text{=-}\dfrac{\text{5}}{\text{4}}$ 

Hence ,

 $\tan x=\dfrac{\sin  x}{\cos x}$ 

        $\text{=}\dfrac{\left( \dfrac{\text{3}}{\text{5}} \right)}{\left( \text{-}\dfrac{\text{4}}{\text{5}} \right)}$

        $\text{=-}\dfrac{\text{3}}{\text{4}}$

And 

$\cot x=\dfrac{1}{\tan x}$

        $\text{=-}\dfrac{\text{4}}{\text{3}}$



3. Find the values of other five trigonometric functions if   $\text{cot x=}\dfrac{\text{3}}{\text{4}}$ , $\text{x}$ lies in third quadrant.

Ans: Here given that,  $\cot x=\dfrac{3}{4}$

Therefore we have,

$\tan x=\dfrac{1}{\cot x}$

       $=\dfrac{1}{\left( \dfrac{3}{4} \right)}$

       $=\dfrac{4}{3}$

Now we know that , \[\text{se}{{\text{c}}^{\text{2}}}\text{x-ta}{{\text{n}}^{\text{2}}}\text{x=1}\]

Therefore we have, $\text{se}{{\text{c}}^{\text{2}}}\text{x=1+ta}{{\text{n}}^{\text{2}}}\text{x}$

Substituting  $\text{tan x=}\dfrac{\text{4}}{\text{3}}$  in the formula, we obtain,

${{\sec }^{2}}x=1+{{\left( \dfrac{4}{3} \right)}^{2}}$

$\text{se}{{\text{c}}^{\text{2}}}\text{x=1+}\dfrac{\text{16}}{\text{9}}$

             $=\dfrac{25}{9}$ 

   $\text{sec x= }\!\!\pm\!\!\text{ }\dfrac{\text{5}}{\text{3}}$

Since $x$ lies in the ${{3}^{rd}}$quadrant, the value of $\sec x$ will be negative.

$\text{sec x=-}\dfrac{\text{5}}{\text{3}}$

Therefore, $\cos  x=\dfrac{1}{\sec x}$ 

                         $\text{=}\dfrac{\text{1}}{\left( \text{-}\dfrac{\text{5}}{\text{3}} \right)}$ 

                          $\text{=-}\dfrac{\text{3}}{\text{5}}$ 

Now  , $\text{tan x=}\dfrac{\text{sin x}}{\text{cos x}}$ 

Therefore, $\text{sin x=tan xcos x}$ 

 Hence we have, $\text{sin x=}\dfrac{\text{4}}{\text{3}}\text{ }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{3}}{\text{5}} \right)$   

                                    \[\text{=}\left( \text{-}\dfrac{\text{4}}{\text{5}} \right)\] 

 And 

$\text{cosec x=}\dfrac{\text{1}}{\text{sin x}}$

          $\text{=-}\dfrac{\text{5}}{\text{4}}$


4. Find the values of other five trigonometric functions if $\text{sec  x=}\dfrac{\text{13}}{\text{5}}$  , $\text{x}$ lies in fourth quadrant.

Ans: Here given that,  $\sec x=\dfrac{13}{5}$

Therefore we have,

$\cos x=\dfrac{1}{\sec x}$

        $=\dfrac{1}{\left( \dfrac{13}{5} \right)}$

        $=\dfrac{5}{13}$

Now we know that , $\text{se}{{\text{c}}^{\text{2}}}\text{x-ta}{{\text{n}}^{\text{2}}}\text{x=1}$

Therefore we have, $\text{ta}{{\text{n}}^{\text{2}}}\text{x=se}{{\text{c}}^{\text{2}}}\text{x-1}$

Substituting  \[\text{sec x=}\dfrac{\text{13}}{\text{5}}\]  in the formula, we obtain,

\[\text{ta}{{\text{n}}^{\text{2}}}\text{x=}{{\left( \dfrac{\text{13}}{\text{5}} \right)}^{\text{2}}}\text{-1}\]

$\text{ta}{{\text{n}}^{\text{2}}}\text{x=}\dfrac{\text{169}}{\text{25}}\text{-1}$

         $\text{=}\dfrac{\text{144}}{\text{25}}$ 

   \[\text{tanx= }\!\!\pm\!\!\text{ }\dfrac{\text{12}}{\text{5}}\]

Since $x$ lies in the ${{4}^{th}}$ quadrant, the value of $\tan x$ will be negative.

$\text{tan x=-}\dfrac{\text{12}}{\text{5}}$

Therefore, \[\text{cot x=}\dfrac{\text{1}}{\text{tan x}}\] 

                          $\text{=-}\dfrac{\text{5}}{\text{12}}$ 

Now  , $\text{tan x=}\dfrac{\text{sin x}}{\text{cos x}}$ 

Therefore, $\text{sin x=tan xcos x}$ 

 Hence we have, $\text{sin x=}\dfrac{\text{5}}{\text{13}}\text{ }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{12}}{\text{5}} \right)$   

                                  $\text{=}\left( \text{-}\dfrac{\text{12}}{\text{13}} \right)$ 

 And 

$\text{cosec x=}\dfrac{\text{1}}{\text{sin x}}$

            $\text{=-}\dfrac{\text{13}}{\text{12}}$


5. Find the values of other five trigonometric functions if  $\text{tan x=-}\dfrac{\text{5}}{\text{12}}$ , $\text{x}$ lies in second quadrant.

Ans: Here given that,  $\text{tan x=-}\dfrac{\text{5}}{\text{12}}$

Therefore we have,

$\text{cot x=}\dfrac{\text{1}}{\text{tan x}}$

       $\text{=}\dfrac{\text{1}}{\left( \text{-}\dfrac{\text{5}}{\text{12}} \right)}$

       $\text{=-}\dfrac{\text{12}}{\text{5}}$

Now we know that , $\text{se}{{\text{c}}^{\text{2}}}\text{x-ta}{{\text{n}}^{\text{2}}}\text{x=1}$

Therefore we have, $\text{se}{{\text{c}}^{\text{2}}}\text{x=1+ta}{{\text{n}}^{\text{2}}}\text{x}$

Substituting  $\text{tan x=-}\dfrac{\text{5}}{\text{12}}$  in the formula, we obtain,

$\text{se}{{\text{c}}^{\text{2}}}\text{x=1+}{{\left( \text{-}\dfrac{\text{5}}{\text{12}} \right)}^{\text{2}}}$

$\text{se}{{\text{c}}^{\text{2}}}\text{x=1+}\dfrac{\text{25}}{\text{144}}$

             $=\dfrac{169}{144}$ 

   $\text{sec x= }\!\!\pm\!\!\text{ }\dfrac{\text{13}}{\text{12}}$

Since $x$ lies in the ${{2}^{nd}}$ quadrant, the value of $\sec x$ will be negative.

$\text{sec x=-}\dfrac{\text{13}}{\text{12}}$

Therefore, $\text{cos x=}\dfrac{\text{1}}{\text{sec x}}$ 

                          $\text{=-}\dfrac{\text{12}}{\text{13}}$ 

Now  , $\text{tan x=}\dfrac{\text{sin x}}{\text{cos x}}$ 

Therefore, $\text{sin x=tan xcos x}$ 

 Hence we have, $\text{sin x=}\left( \text{-}\dfrac{\text{5}}{\text{12}} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{12}}{\text{13}} \right)$   

                                    $=\left( \dfrac{5}{13} \right)$ 

 And 

$\text{cosec x=}\dfrac{\text{1}}{\text{sin x}}$

           $\text{=}\dfrac{\text{13}}{\text{5}}$


6. Find the value of the trigonometric function $\text{sin76}{{\text{5}}^{\text{o}}}$ .

Ans: We know that the values of $\sin x$ repeat after an interval of $2\pi $ or ${{360}^{\circ }}$ .

Therefore we can write,

$\text{sin76}{{\text{5}}^{\text{o}}}\text{=sin}\left( \text{2 }\!\!\times\!\!\text{ 36}{{\text{0}}^{\text{o}}}\text{+4}{{\text{5}}^{\text{o}}} \right)$

            $\text{=sin4}{{\text{5}}^{\text{o}}}$

            $\text{=}\dfrac{\text{1}}{\sqrt{\text{2}}}\text{.}$


7. Find the value of the trigonometric function $\text{cosec}\left( \text{-141}{{\text{0}}^{\text{o}}} \right)$  

Ans: We  know that the values of $\text{cosec x}$ repeat after an interval of $\text{2 }\!\!\pi\!\!\text{ }$ or ${{360}^{\circ }}$ .

Therefore we can write,

           $\text{cosec}\left( \text{-141}{{\text{0}}^{\text{o}}} \right)\text{=cosec}\left( \text{-141}{{\text{0}}^{\text{o}}}\text{+4 }\!\!\times\!\!\text{ 36}{{\text{0}}^{\text{o}}} \right)$

                               $\text{=cosec}\left( \text{-141}{{\text{0}}^{\text{o}}}\text{+144}{{\text{0}}^{\text{o}}} \right)$

                               $\text{=cosec3}{{\text{0}}^{\text{o}}}$

                               $=2$ 


8. Find the value of the trigonometric function  $\text{tan}\dfrac{\text{19 }\!\!\pi\!\!\text{ }}{\text{3}}$ .

Ans: We know that the values of $\text{tan x}$ repeat after an interval of $\text{ }\!\!\pi\!\!\text{ }$ or \[{{180}^{\circ }}\].

Therefore we can write,

$\text{tan}\dfrac{\text{19 }\!\!\pi\!\!\text{ }}{\text{3}}\text{=tan6}\dfrac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }$

            $\text{=tan}\left( \text{6 }\!\!\pi\!\!\text{ +}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}} \right)$

            \[\text{=tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\]

            $\text{=}\sqrt{\text{3}}$      


9. Find the value of the trigonometric function $\text{sin}\left( \text{-}\dfrac{\text{11 }\!\!\pi\!\!\text{ }}{\text{3}} \right)$ 

Ans: We know that the values of $\text{sin x}$ repeat after an interval of $\text{2 }\!\!\pi\!\!\text{ }$ or ${{360}^{\circ }}$ .

Therefore we can write,

$\text{sin}\left( \text{-}\dfrac{\text{11 }\!\!\pi\!\!\text{ }}{\text{3}} \right)\text{=sin}\left( \text{-}\dfrac{\text{11 }\!\!\pi\!\!\text{ }}{\text{3}}\text{+2 }\!\!\times\!\!\text{ 2 }\!\!\pi\!\!\text{ } \right)$ 

                   $\text{=sin}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}} \right)$

                    $=\dfrac{\sqrt{3}}{2}$


10. Find the value of the trigonometric function $\text{cot}\left( \text{-}\dfrac{\text{15 }\!\!\pi\!\!\text{ }}{\text{4}} \right)$ 

Ans: We  know that the values of $\text{cot x}$ repeat after an interval of $\text{ }\!\!\pi\!\!\text{ }$ or \[{{180}^{\circ }}\].

Therefore we can write,

$\text{cot}\left( \text{-}\dfrac{\text{15 }\!\!\pi\!\!\text{ }}{\text{4}} \right)\text{=cot}\left( \text{-}\dfrac{\text{15 }\!\!\pi\!\!\text{ }}{\text{4}}\text{+4 }\!\!\pi\!\!\text{ } \right)$ 

                   $\text{=cot}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}$

              $=1$


Exercise 3.3

1. Prove that $\text{si}{{\text{n}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{+co}{{\text{s}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{-ta}{{\text{n}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{=-}\dfrac{\text{1}}{\text{2}}$

Ans: Substituting the values of  \[\text{sin}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{,cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{,tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\] on left hand side,

$\text{si}{{\text{n}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{+co}{{\text{s}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{-ta}{{\text{n}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{=}{{\left( \dfrac{\text{1}}{\text{2}} \right)}^{\text{2}}}\text{+}{{\left( \dfrac{\text{1}}{\text{2}} \right)}^{\text{2}}}\text{-}{{\left( \text{1} \right)}^{\text{2}}}$

                                  \[\text{=}\dfrac{\text{1}}{\text{4}}\text{+}\dfrac{\text{1}}{\text{4}}\text{-1}\]

                                  $=-\dfrac{1}{2}$

                                  $=$ R.H.S.

Hence proved.


2. Prove that $\text{2si}{{\text{n}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{+cose}{{\text{c}}^{\text{2}}}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}\text{co}{{\text{s}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{=}\dfrac{\text{3}}{\text{2}}$

Ans: Substituting the values of  $\text{sin}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{,cosec}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}\text{,cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ on left hand side,

L.H.S.$\text{=2si}{{\text{n}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{+cose}{{\text{c}}^{\text{2}}}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}\text{co}{{\text{s}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$

           $\text{=2}{{\left( \dfrac{\text{1}}{\text{2}} \right)}^{\text{2}}}\text{+cose}{{\text{c}}^{\text{2}}}\left( \text{ }\!\!\pi\!\!\text{ +}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right){{\left( \dfrac{\text{1}}{\text{2}} \right)}^{\text{2}}}$

           $\text{=2 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{4}}\text{+}{{\left( \text{-cosec}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right)}^{\text{2}}}\left( \dfrac{\text{1}}{\text{4}} \right)$

          $\text{=}\dfrac{\text{1}}{\text{2}}\text{+}{{\left( \text{-2} \right)}^{\text{2}}}\left( \dfrac{\text{1}}{\text{4}} \right)$

Since $\text{cosec x}$ repeat its value after an interval of $\text{2 }\!\!\pi\!\!\text{ }$ , 

we have, $\text{cosec}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}\text{=-cosec}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$  

L.H.S  $=\dfrac{1}{2}+\dfrac{4}{4}$

           $=\dfrac{3}{2}$ 

          $=$ R.H.S.

Hence proved.


3. Prove that $\text{co}{{\text{t}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{+cosec}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}\text{+3ta}{{\text{n}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{=6}$

Ans: Substituting the values of  $\text{cot}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{,cosec}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}\text{,tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$ on left hand side,

L.H.S.$\text{=co}{{\text{t}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{+cosec}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}\text{+3ta}{{\text{n}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$

           $\text{=}{{\left( \sqrt{\text{3}} \right)}^{\text{2}}}\text{+cosec}\left( \text{ }\!\!\pi\!\!\text{ -}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right)\text{+3}{{\left( \dfrac{\text{1}}{\sqrt{\text{3}}} \right)}^{\text{2}}}$

         $\text{=3+cosec}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{+3 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{3}}$

Since $\text{cosec x}$ repeat its value after an interval of $\text{2 }\!\!\pi\!\!\text{ }$ , 

we have, $\text{cosec}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}\text{=cosec}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$  

L.H.S $=3+2+1$ 

          $=1$ 

          $=$ R.H.S.

Hence proved.


4. Prove that $\text{2si}{{\text{n}}^{\text{2}}}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{+2co}{{\text{s}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{+2se}{{\text{c}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{=10}$

Ans:

Substituting the values of  $\text{sin}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{,cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{,sec}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ on left hand side,

L.H.S.$\text{=2si}{{\text{n}}^{\text{2}}}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{+2co}{{\text{s}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{+2se}{{\text{c}}^{\text{2}}}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$

           $\text{=2}{{\left\{ \text{sin}\left( \text{ }\!\!\pi\!\!\text{ -}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right) \right\}}^{\text{2}}}\text{+2}{{\left( \dfrac{\text{1}}{\sqrt{\text{2}}} \right)}^{\text{2}}}\text{+2}{{\left( \text{2} \right)}^{\text{2}}}$

           $\text{=2}{{\left\{ \text{sin}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right\}}^{\text{2}}}\text{+2 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{2}}\text{+8}$

Since $\text{sin x}$ repeat its value after an interval of \[\text{2 }\!\!\pi\!\!\text{ }\] , 

we have, \[\text{sin}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{=sin}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\]  

 L.H.S  $=1+1+8$ 

            $=10$

            $=$ R.H.S.

Hence proved.


5. Find the value of :

(i) $\text{sin7}{{\text{5}}^{\text{o}}}$

Ans: We have,

$\text{sin7}{{\text{5}}^{\text{o}}}\text{=sin(4}{{\text{5}}^{\text{o}}}\text{+3}{{\text{0}}^{\text{o}}}\text{)}$

          $\text{=sin4}{{\text{5}}^{\text{o}}}\text{cos3}{{\text{0}}^{\text{o}}}\text{+cos4}{{\text{5}}^{\text{o}}}\text{sin3}{{\text{0}}^{\text{o}}}$

Since we know that, $\text{sin}\left( \text{x+y} \right)\text{=sin x cos y+cos x sin y}$ 

Therefore we have,

$Sin 75^o = \dfrac{1}{\sqrt 2}\times \dfrac{\sqrt 3}{2} + \dfrac{1}{\sqrt 2}\times\dfrac{1}{2}$

$Sin 75^o = \dfrac{{\sqrt 3}+1}{2\sqrt 2}$


(ii) $\text{tan1}{{\text{5}}^{\text{o}}}$

Ans: We have,

\[\text{tan1}{{\text{5}}^{\text{o}}}\text{=tan}\left( \text{4}{{\text{5}}^{\text{o}}}\text{-3}{{\text{0}}^{\text{o}}} \right)\]

        $\text{=}\dfrac{\text{tan4}{{\text{5}}^{\text{o}}}\text{-tan3}{{\text{0}}^{\text{o}}}}{\text{1+tan4}{{\text{5}}^{\text{o}}}\text{tan3}{{\text{0}}^{\text{o}}}}$

Since we know, $\text{tan}\left( \text{x-y} \right)\text{=}\dfrac{\text{tan x-tan y}}{\text{1+tan x tan y}}$

Therefore we have,

$\text{tan1}{{\text{5}}^{\text{o}}}\text{=}\dfrac{\text{1-}\dfrac{\text{1}}{\sqrt{\text{3}}}}{\text{1+1}\left( \dfrac{\text{1}}{\sqrt{\text{3}}} \right)}$

           $\text{=}\dfrac{\dfrac{\sqrt{\text{3}}\text{-1}}{\sqrt{\text{3}}}}{\dfrac{\sqrt{\text{3}}\text{+1}}{\sqrt{\text{3}}}}$

         $\text{=}\dfrac{\sqrt{\text{3}}\text{-1}}{\sqrt{\text{3}}\text{+1}}$

         $\text{=}\dfrac{{{\left( \sqrt{\text{3}}\text{-1} \right)}^{\text{2}}}}{\left( \sqrt{\text{3}}\text{+1} \right)\left( \sqrt{\text{3}}\text{-1} \right)}$ 

Further computing we have,

$\text{tan1}{{\text{5}}^{\text{o}}}\text{=}\dfrac{\text{3+1-2}\sqrt{\text{3}}}{{{\left( \sqrt{\text{3}} \right)}^{\text{2}}}\text{-}{{\left( \text{1} \right)}^{\text{2}}}}$ 

           \[\text{=}\dfrac{\text{4-2}\sqrt{\text{3}}}{\text{3-1}}\]

           \[\text{=2-}\sqrt{\text{3}}\]


6. Prove that $\text{cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)\text{cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-y} \right)\text{-sin}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)\text{sin}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-y} \right)\text{=sin}\left( \text{x+y} \right)$

Ans: We know that, $\text{cos}\left( \text{x+y} \right)\text{=cos xcos y-sin xsin y}$ 

$\text{cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)\text{cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-y} \right)\text{-sin}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)\text{sin}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-y} \right)\text{=cos}\left[ \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x+}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-y} \right]$

$\text{=cos}\left[ \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{-}\left( \text{x+y} \right) \right]$

$\text{=sin}\left( \text{x+y} \right)$ 

L.H.S  $=$ R.H.S.

Hence  proved.


7. Prove that $\dfrac{\text{tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{+x} \right)}{\text{tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)}\text{=}{{\left( \dfrac{\text{1+tanx}}{\text{1-tanx}} \right)}^{\text{2}}}$

Ans: We  know that ,$\text{tan}\left( \text{A+B} \right)\text{=}\dfrac{\text{tan A+tan B}}{\text{1-tan Atan B}}$

and $\text{tan}\left( \text{A-B} \right)\text{=}\dfrac{\text{tan A-tan B}}{\text{1+tan Atan B}}$

L.H.S.$\text{=}\dfrac{\text{tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{+x} \right)}{\text{tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)}$

Using the above formula,

          $\text{L}\text{.H}\text{.S=}\dfrac{\left( \dfrac{\text{tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{+tanx}}{\text{1-tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{tanx}} \right)}{\dfrac{\text{tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-tanx}}{\text{1+tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{tanx}}}$

                    $\text{=}\dfrac{\left( \dfrac{\text{1+tan x}}{\text{1-tan x}} \right)}{\left( \dfrac{\text{1-tan x}}{\text{1+tan x}} \right)}$      [ substituting $\text{tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{=1}$ ]

                    $\text{=}{{\left( \dfrac{\text{1+tan x}}{\text{1-tan x}} \right)}^{\text{2}}}$

                    $=$ R.H.S.

Hence proved.


8.  Prove that  $\dfrac{\text{cos}\left( \text{ }\!\!\pi\!\!\text{ +x} \right)\text{cos}\left( \text{-x} \right)}{\text{sin}\left( \text{ }\!\!\pi\!\!\text{ -x} \right)\text{cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{+x} \right)}\text{=co}{{\text{t}}^{\text{2}}}\text{x}$

Ans: Observe that $\text{cos x}$ repeats same value after an interval $\text{2 }\!\!\pi\!\!\text{ }$ 

and $\text{sin x}$ repeats same value after an interval  $\text{2 }\!\!\pi\!\!\text{ }$.

L.H.S.$\text{=}\dfrac{\text{cos}\left( \text{ }\!\!\pi\!\!\text{ +x} \right)\text{cos}\left( \text{-x} \right)}{\text{sin}\left( \text{ }\!\!\pi\!\!\text{ -x} \right)\text{cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{+x} \right)}$

           $\text{=}\dfrac{\left[ \text{-cos x} \right]\left[ \text{cos x} \right]}{\left( \text{sin x} \right)\left( \text{-sin x} \right)}$

           $\text{=}\dfrac{\text{-co}{{\text{s}}^{\text{2}}}\text{x}}{\text{-si}{{\text{n}}^{\text{2}}}\text{x}}$

           $\text{=co}{{\text{t}}^{\text{2}}}\text{x}$

Hence proved.


9. Prove that,

$\text{Cos}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{2}}\text{+x} \right)\text{Cos}\left( \text{2 }\!\!\pi\!\!\text{ +x} \right)\left[ \text{cot}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{2}}\text{-x} \right)\text{+cot}\left( \text{2 }\!\!\pi\!\!\text{ +x} \right) \right]\text{=1}$

Ans: We know that $\text{cot x}$  repeats same value after an interval $2\pi $ .

L.H.S.$=Cos\left( \dfrac{3\pi }{2}+x \right)Cos\left( 2\pi +x \right)\left[ cot\left( \dfrac{3\pi }{2}-x \right)+cot\left( 2\pi +x \right) \right]$

           $\text{=sin x cos x}\left[ \text{tan x+cot x} \right]$

Substituting $\text{tan x=}\dfrac{\text{sin x}}{\text{cos x}}$ and

$\text{cot x=}\dfrac{\text{cos x}}{\text{sin x}}$ ,

$\text{L}\text{.H}\text{.S=sin xcos x}\left( \dfrac{\text{sin x}}{\text{cos x}}\text{+}\dfrac{\text{cos x}}{\text{sin x}} \right)$

         $\text{=}\left( \text{sin x cos x} \right)\left[ \dfrac{\text{si}{{\text{n}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{x}}{\text{sin x cos x}} \right]$

         $\text{=1}$ 

        $\text{=}$ R.H.S.

Hence proved.


10. Prove that $\text{sin}\left( \text{n+1} \right)\text{xsin}\left( \text{n+2} \right)\text{x+cos (n+1)x cos (n+2)x=cos x}$

Ans: We know that , $\text{cos}\left( \text{x-y} \right)\text{=cosxcosy+sinxsiny}$ 

L.H.S.$\text{=sin}\left( \text{n+1} \right)\text{xsin}\left( \text{n+2} \right)\text{x+cos (n+1)x cos (n+2)x}$

           $\text{=cos}\left[ \left( \text{n+1} \right)\text{x-}\left( \text{n+2} \right)\text{x} \right]$ 

           $\text{=cos}\left( \text{-x} \right)$ 

           $\text{=cosx}$ 

           $=$  R.H.S.


11. Prove that $\text{cos}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{+x} \right)\text{-cos}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)\text{=-}\sqrt{\text{2}}\text{sinx}$

Ans: We  know that , $\text{cos A-cos B=-2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{.sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

$\therefore $ L.H.S.$\text{=cos}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{+x} \right)\text{-cos}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)$

               $\text{=-2sin}\left\{ \dfrac{\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{+x} \right)\text{+}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)}{\text{2}} \right\}\text{.sin}\left\{ \dfrac{\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{+x} \right)\text{-}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{-x} \right)}{\text{2}} \right\}$

               $\text{=-2sin}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}} \right)\text{sin x}$ 

Since $\text{sin x}$ repeats the same value after an interval $\text{2 }\!\!\pi\!\!\text{ }$ , 

we have, $\text{sin}\left( \dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}} \right)\text{=sin}\left( \text{ }\!\!\pi\!\!\text{ -}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right)$ 

therefore, 

$\text{L}\text{.H}\text{.S=-2sin}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{sin x}$ 

           $\text{=-2 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\sqrt{\text{2}}}\text{ }\!\!\times\!\!\text{ sinx}$

           $\text{=-}\sqrt{\text{2}}\text{sin x}$

           $\text{=}$ R.H.S.

Hence proved.


12. Prove that $\text{si}{{\text{n}}^{\text{2}}}\text{6x-si}{{\text{n}}^{\text{2}}}\text{4x=sin 2x sin 10x}$

Ans: We know that,$\text{sinA+sinB=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

And $\text{sin A-sin B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

$\therefore $ L.H.S.$\text{=si}{{\text{n}}^{\text{2}}}\text{6x-si}{{\text{n}}^{\text{2}}}\text{4xa}$

               $\text{=}\left( \text{sin 6x+sin 4x} \right)\left( \text{sin 6x-sin 4x} \right)$

               $\text{=}\left[ \text{2sin}\left( \dfrac{\text{6x+4x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{6x-4x}}{\text{2}} \right) \right]\left[ \text{2cos}\left( \dfrac{\text{6x+4x}}{\text{2}} \right)\text{.sin}\left( \dfrac{\text{6x-4x}}{\text{2}} \right) \right]$

               $\text{=}\left( \text{2sin 5x cos x} \right)\left( \text{2cos 5x sin x} \right)$

Now we know that, $\text{sin 2x=2sin x cos x}$ ,

Therefore we have,

$\text{L}\text{.H}\text{.S=}\left( \text{2sin 5x cos 5x} \right)\left( \text{2sin x cos x} \right)$ 

          $\text{=sin 10x sin 2x}$

          $\text{=}$ R.H.S.


13. Prove that $\text{co}{{\text{s}}^{\text{2}}}\text{2x-co}{{\text{s}}^{\text{2}}}\text{6x=sin 4x sin 8x}$

Ans: We  know that,

$\text{cos A+cos B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

And $\text{cos A-cos B=-2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

 L.H.S.$\text{=co}{{\text{s}}^{\text{2}}}\text{2x-co}{{\text{s}}^{\text{2}}}\text{6x}$

            $\text{=}\left( \text{cos 2x+cos 6x} \right)\left( \text{cos 2x-6x} \right)$

            $\text{=}\left[ \text{2cos}\left( \dfrac{\text{2x+6x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{2x-6x}}{\text{2}} \right) \right]\left[ \text{-2sin}\left( \dfrac{\text{2x+6x}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{2x-6x}}{\text{2}} \right) \right]$

Further computing, we have,

$\text{L}\text{.H}\text{.S=}\left[ \text{2cos 4x cos}\left( \text{-2x} \right) \right]\left[ \text{-2sin 4xsin}\left( \text{-2x} \right) \right]$

         $\text{=}\left[ \text{2cos  4x cos 2x} \right]\left[ \text{-2sin 4x}\left( \text{-sin 2x} \right) \right]$

         $\text{=}\left( \text{2sin 4x cos 4x} \right)\left( \text{2sin 2xcos 2x} \right)$

Now we know that, $\text{sin 2x=2sin x cos x}$ 

Therefore we have,                

$\text{L}\text{.H}\text{.S=sin 8x sin 4x}$

         $\text{=}$  R.H.S.

.Hence proved.


14. Prove that $\text{sin 2x+2sin 4x+sin6=4co}{{\text{s}}^{\text{2}}}\text{xsin 4x}$

Ans: We know that, \[\text{sin A+sin B=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)\]

L.H.S.$\text{=sin 2x+2sin 4x+sin 6x}$

.           $\text{=}\left[ \text{sin 2x+sin 6x} \right]\text{+2sin 4x}$

           $\text{=}\left[ \text{2sin}\left( \dfrac{\text{2x+6x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{2x-6x}}{\text{2}} \right) \right]\text{+2sin4x}$

           $\text{=2sin 4xcos}\left( \text{-2x} \right)\text{+2sin 4x}$

Further computing,

We have, $\text{L}\text{.H}\text{.S=2sin 4x cos 2x+2sin 4x}$ 

                         $\text{=2sin 4x}\left( \text{cos 2x+1} \right)$ 

Now we know that, $\text{cos 2x+1=2co}{{\text{s}}^{\text{2}}}\text{x}$ 

Therefore we have,

$\text{L}\text{.H}\text{.S=2sin 4x}\left( \text{2co}{{\text{s}}^{\text{2}}}\text{x} \right)$ 

         $\text{=4co}{{\text{s}}^{\text{2}}}\text{xsin 4x}$

 = R.H.S.

Hence proved.


15. Prove that $\text{cot 4x}\left( \text{sin 5x+sin 3x} \right)\text{=cot x}\left( \text{sin 5x-sin 3x} \right)$

Ans: We know that, $\text{sin A+sin B=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

L.H.S.$\text{=cot 4x}\left( \text{sin 5x+sin 3x} \right)$

          $\text{=}\dfrac{\text{cot 4x}}{\text{sin 4x}}\left[ \text{2sin}\left( \dfrac{\text{5x+3x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{5x+3x}}{\text{2}} \right) \right]$

          $\text{=}\left( \dfrac{\text{cos 4x}}{\text{sin 4x}} \right)\left[ \text{2sin 4x cos x} \right]$

          $\text{=2cos 4x cos x}$

Now also ,we know that, $\text{sin A-sin B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

 R.H.S.$\text{=cot x}\left( \text{sin 5x-sin 3x} \right)$

            $\text{=}\dfrac{\text{cos x}}{\text{sin x}}\left[ \text{2cos}\left( \dfrac{\text{5x+3x}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{5x-3x}}{\text{2}} \right) \right]$


            $\text{=}\dfrac{\text{cos x}}{\text{sin x}}\left[ \text{2cos 4x sin x} \right]$

            $\text{=2cos 4x cos x}$

Therefore , we can conclude that,

L.H.S.=R.H.S.

Hence proved.


16. Prove that $\dfrac{\text{cos 9x-cos 5x}}{\text{sin 17x-sin 3x}}\text{=-}\dfrac{\text{sin 2x}}{\text{cos 10x}}$

Ans: We know that,

$\text{cos A-cos B=-2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

And  $\text{sin A-sin B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

 L.H.S.$\text{=}\dfrac{\text{cos 9x-cos 5x}}{\text{sin 17x-sin 3x}}$

            \[\text{=}\dfrac{\text{-2sin}\left( \dfrac{\text{9x+5x}}{\text{2}} \right)\text{.sin}\left( \dfrac{\text{9x-5x}}{\text{2}} \right)}{\text{2cos}\left( \dfrac{\text{17x+3x}}{\text{2}} \right)\text{.sin}\left( \dfrac{\text{17x-3x}}{\text{2}} \right)}\]                    (following the formula)

           

            $\text{=}\dfrac{\text{-2sin 7x}\text{.sin 2x}}{\text{2cos 10x}\text{.sin 7x}}$

            $\text{=-}\dfrac{\text{sin 2x}}{\text{cos 10x}}$ 

            $=$ R.H.S.

Hence proved.


17. Prove that:$\dfrac{\text{sin 5x+sin 3x}}{\text{cos 5x+cos 3x}}\text{=tan 4x}$

Ans:

We  know that

$\text{sin A+sin B=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)\text{,}$

$\text{cos A+cos B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

Now , L.H.S.$\text{=}\dfrac{\text{sin 5x+sin 3x}}{\text{cos 5x+cos 3x}}$

                      $\text{=}\dfrac{\text{2sin}\left( \dfrac{\text{5x+3x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{5x-3x}}{\text{2}} \right)}{\text{2cos}\left( \dfrac{\text{5x+3x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{5x-3x}}{\text{2}} \right)}$                  (using the formula)

                      $\text{=}\dfrac{\text{2sin}\left( \dfrac{\text{5x+3x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{5x-3x}}{\text{2}} \right)}{\text{2cos}\left( \dfrac{\text{5x+3x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{5x-3x}}{\text{2}} \right)}$

                      $\text{=}\dfrac{\text{2sin 4x cos x}}{\text{2cos 4x cos x}}$

Further computing we have,

$\text{L}\text{.H}\text{.S=tan 4x}$ 

          $=$ R.H.S.

 

18. Prove that \[\dfrac{\text{sin x-sin y}}{\text{cos x+cos y}}\text{=tan}\dfrac{\text{x-y}}{\text{2}}\]

Ans: We  know that,

$\text{sin A-sin B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)\text{,}$

.$\text{cos A+cos B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

  L.H.S.\[\text{=}\dfrac{\text{sin x-sin y}}{\text{cosx+cosy}}\]

               $\text{=}\dfrac{\text{2cos}\left( \dfrac{\text{x+y}}{\text{2}} \right)\text{.sin}\left( \dfrac{\text{x-y}}{\text{2}} \right)}{\text{2cos}\left( \dfrac{\text{x+y}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{x-y}}{\text{2}} \right)}$

               $\text{=}\dfrac{\text{sin}\left( \dfrac{\text{x-y}}{\text{2}} \right)}{\text{cos}\left( \dfrac{\text{x-y}}{\text{2}} \right)}$

              $\text{=tan}\left( \dfrac{\text{x-y}}{\text{2}} \right)$

Therefore $\text{L}\text{.H}\text{.S=R}\text{.H}\text{.S}$ 

Hence proved.


19. Prove that $\dfrac{\text{sin x+sin 3x}}{\text{cos x+cos 3x}}\text{=tan 2x}$

Ans: We  know that

$\text{sin A+sin B=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{,}$

.\[\text{cos A+cos B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)\]

Now , L.H.S.$\text{=}\dfrac{\text{sinx+sin3x}}{\text{cos x+cos 3x}}$

                      $\text{=}\dfrac{\text{2sin}\left( \dfrac{\text{x+3x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{x-3x}}{\text{2}} \right)}{\text{2cos}\left( \dfrac{\text{x+3x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{x-3x}}{\text{2}} \right)}$                   (using the formula)

                      $\text{=}\dfrac{\text{sin 2x}}{\text{cos 2x}}$

                      $\text{=tan 2x}$

Therefore  L.H.S$=$ R.H.S.

Hence proved.


20. Prove that $\dfrac{\text{sin x-sin 3x}}{\text{si}{{\text{n}}^{\text{2}}}\text{x-co}{{\text{s}}^{\text{2}}}\text{x}}\text{=2sin x}$

Ans: We know that,

$\text{sin A-sin B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

And \[\text{co}{{\text{s}}^{\text{2}}}\text{A-si}{{\text{n}}^{\text{2}}}\text{A=cos 2A}\]

 L.H.S.$\text{=}\dfrac{\text{sin x-sin 3x}}{\text{si}{{\text{n}}^{\text{2}}}\text{x-co}{{\text{s}}^{\text{2}}}\text{x}}$

       \[\text{=}\dfrac{\text{2cos}\left( \dfrac{\text{x+3x}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{x-3x}}{\text{2}} \right)}{\text{-cos2x}}\]

            $\text{=}\dfrac{\text{2cos2xsin}\left( \text{-x} \right)}{\text{-cos 2x}}$

            $\text{=-2 }\!\!\times\!\!\text{ }\left( \text{-sinx} \right)$

Therefore , we have,

$\text{L}\text{.H}\text{.S=2sin x}$

        $=$ R.H.S.

Hence proved.


21. Prove that $\dfrac{\text{cos 4x+cos 3x+cos 2x}}{\text{sin 4x+sin 3x+sin 2x}}\text{=cot 3x}$

Ans: We know that,

$\text{cos A+cos B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

And, $\text{sin A+sin B=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

Now, L.H.S.$\text{=}\dfrac{\text{cos 4x+cos 3x+cos 2x}}{\text{sin 4x+sin 3x+sin 2x}}$

                     \[\text{=}\dfrac{\left( \text{cos 4x+cos 2x} \right)\text{+cos 3x}}{\left( \text{sin4x+sin2x} \right)\text{+sin 3x}}\]

                     \[\text{=}\dfrac{\text{2cos}\left( \dfrac{\text{4x+2x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{4x-2x}}{\text{2}} \right)\text{+cos3x}}{\text{2sin}\left( \dfrac{\text{4x+2x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{4x-2x}}{\text{2}} \right)\text{+sin 3x}}\]   (using the formulas)

                      \[\text{=}\dfrac{\text{2cos 3x cos x+cos 3x}}{\text{2sin 3x cos x+sin 3x}}\]

Further computing, we obtain,

L.H.S$\text{=}\dfrac{\text{cos 3x}\left( \text{2cos x+1} \right)}{\text{sin 3x}\left( \text{2cos x+1} \right)}$ 

          \[\text{=cot 3x}\] 

          $=$ R.H.S.

Hence proved.


22. Prove that \[\text{cot x cot 2x-cot 2x cot 3x-cot 3x cot x=1}\]

Ans:

We know that, \[\text{cot}\left( \text{A+B} \right)\text{=}\dfrac{\text{cotAcotB-1}}{\text{cot A+cot B}}\]

Now , L.H.S.$\text{=cot xcot 2x-cot 2x cot 3x-cot 3x cot x}$

                      \[\text{=cot x cot 2x-cot 3x}\left( \text{cot 2x+cot x} \right)\]

                      \[\text{=cot x cot 2x-cot}\left( \text{2x+x} \right)\left( \text{cot 2x+cot x} \right)\]

                      \[\text{=cot x cot 2x-}\left[ \dfrac{\text{cot 2x cot x-1}}{\text{cot x+cot 2x}} \right]\left( \text{cot 2x+cot x} \right)\]

Further computing we obtain,

$\text{L}\text{.H}\text{.S=cot x cot 2x-}\left( \text{cot 2x cot x-1} \right)$ 

         \[\text{=1}\]

         $\text{=}$ R.H.S.

Hence proved.


23. Prove that $\text{tan 4x=}\dfrac{\text{4tan x}\left( \text{1-ta}{{\text{n}}^{\text{2}}}\text{x} \right)}{\text{1-6ta}{{\text{n}}^{\text{2}}}\text{x+ta}{{\text{n}}^{\text{4}}}\text{x}}$

Ans: We  know that $\text{tan 2A=}\dfrac{\text{2tan A}}{\text{1-ta}{{\text{n}}^{\text{2}}}\text{A}}$

L.H.S.$\text{=tan 4x}$

           $\text{=tan2}\left( \text{2x} \right)$

           \[\text{=}\dfrac{\text{2tan 2x}}{\text{1-ta}{{\text{n}}^{\text{2}}}\left( \text{2x} \right)}\][using the formula]

           $\text{=}\dfrac{\left( \dfrac{\text{4tan x}}{\text{1-ta}{{\text{n}}^{\text{2}}}\text{x}} \right)}{\left[ \text{1-}\dfrac{\text{4ta}{{\text{n}}^{\text{2}}}\text{x}}{{{\left( \text{1-ta}{{\text{n}}^{\text{2}}}\text{x} \right)}^{\text{2}}}} \right]}$

Further  computing, we obtain,

L.H.S $\text{=}\dfrac{\left( \dfrac{\text{4tan x}}{\text{1-ta}{{\text{n}}^{\text{2}}}\text{x}} \right)}{\left[ \dfrac{{{\left( \text{1-ta}{{\text{n}}^{\text{2}}}\text{x} \right)}^{\text{2}}}\text{4ta}{{\text{n}}^{\text{2}}}\text{x}}{{{\left( \text{1-ta}{{\text{n}}^{\text{2}}}\text{x} \right)}^{\text{2}}}} \right]}$$$$$

          $\text{=}\dfrac{\text{4tan x}\left( \text{1-ta}{{\text{n}}^{\text{2}}}\text{x} \right)}{\text{1+ta}{{\text{n}}^{\text{4}}}\text{x-2ta}{{\text{n}}^{\text{2}}}\text{x-4ta}{{\text{n}}^{\text{2}}}\text{x}}$

          $\text{=}\dfrac{\text{4tan x}\left( \text{1-ta}{{\text{n}}^{\text{2}}}\text{x} \right)}{\text{1-6ta}{{\text{n}}^{\text{2}}}\text{x+ta}{{\text{n}}^{\text{4}}}\text{x}}$ 

          $=$ R.H.S.

Hence  proved.


24. Prove that $\text{cos 4x=1-8si}{{\text{n}}^{\text{2}}}\text{xco}{{\text{s}}^{\text{2}}}\text{x}$

Ans: We know that, $\text{cos 2x=1-2si}{{\text{n}}^{\text{2}}}\text{x}$ 

And $\text{sin 2x=2sin x cos x}$ 

L.H.S.\[\text{=cos 4x}\]

           $\text{=cos 2}\left( \text{2x} \right)$

           $\text{=1-2si}{{\text{n}}^{\text{2}}}\text{2x}$

           $\text{=1-2}{{\left( \text{2sin x cos x} \right)}^{\text{2}}}$

Further computing we get,

L.H.S$\text{=1-8si}{{\text{n}}^{\text{2}}}\text{xco}{{\text{s}}^{\text{2}}}\text{x}$ 

          $=$R.H.S.

Hence  proved.


25. Prove that $\text{cos 6x=32xco}{{\text{s}}^{\text{6}}}\text{x-48co}{{\text{s}}^{\text{4}}}\text{x+18co}{{\text{s}}^{\text{2}}}\text{x-1}$

Ans: We know that, $\text{cos 3A=4co}{{\text{s}}^{\text{3}}}\text{A-3cosA}$

and  $\text{cos 2x=1-2si}{{\text{n}}^{\text{2}}}\text{x}$

L.H.S.$\text{=cos 6x}$

           $\text{=cos 3}\left( \text{2x} \right)$

           \[\text{=4co}{{\text{s}}^{\text{3}}}\text{2x-3cos 2x}\]

           \[\text{=4}\left[ {{\left( \text{2co}{{\text{s}}^{\text{2}}}\text{x-1} \right)}^{\text{3}}}\text{-3}\left( \text{2co}{{\text{s}}^{\text{2}}}\text{x-1} \right) \right]\]

Further computing,

L.H.S$\text{=4}\left[ {{\left( \text{2co}{{\text{s}}^{\text{2}}}\text{x} \right)}^{\text{3}}}\text{-}{{\left( \text{1} \right)}^{\text{3}}}\text{-3}\left( \text{2co}{{\text{s}}^{\text{2}}}\text{x} \right) \right]\text{-6co}{{\text{s}}^{\text{2}}}\text{x+3}$

         $\text{=4}\left[ {{\left( \text{2co}{{\text{s}}^{\text{2}}}\text{x} \right)}^{\text{3}}}\text{-}{{\left( \text{1} \right)}^{\text{3}}}\text{-3}{{\left( \text{2co}{{\text{s}}^{\text{2}}}\text{x} \right)}^{\text{2}}}\text{+3}\left( \text{2co}{{\text{s}}^{\text{2}}}\text{x} \right) \right]\text{-6co}{{\text{s}}^{\text{2}}}\text{x+3}$

         $\text{=4}\left[ \text{8co}{{\text{s}}^{\text{6}}}\text{x-1-12co}{{\text{s}}^{\text{4}}}\text{x+6co}{{\text{s}}^{\text{2}}}\text{x} \right]\text{-6co}{{\text{s}}^{\text{2}}}\text{x+3}$

         $\text{=32co}{{\text{s}}^{\text{6}}}\text{x-48co}{{\text{s}}^{\text{4}}}\text{x+18co}{{\text{s}}^{\text{2}}}\text{x-1}$

Therefore we have,

L.H.S $=$ R.H.S.

Hence  proved.


Miscellaneous Exercise

1. Prove that: $\text{2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}}\text{cos}\dfrac{\text{9 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+cos}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+cos}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{13}}\text{=0}$

Ans: We know that $\text{cos x+cos y=2cos}\left( \dfrac{\text{x+y}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{x-y}}{\text{2}} \right)$

Now L.H.S.$\text{=2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}}\text{cos}\dfrac{\text{9 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+cos}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+cos}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{13}}$

                    $\text{=2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{cos}\dfrac{\text{9 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+2cos}\left( \dfrac{\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{13}}}{\text{2}} \right)\text{cos}\left( \dfrac{\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{13}}\text{-}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{13}}}{\text{2}} \right)$       (using the formula)

                    $\text{=2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}}\text{cos}\dfrac{\text{9 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+2cos}\dfrac{\text{4 }\!\!\pi\!\!\text{ }}{\text{13}}\text{cos}\left( \dfrac{\text{- }\!\!\pi\!\!\text{ }}{\text{13}} \right)$

                    $\text{=2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}}\text{cos}\dfrac{\text{9 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+2cos}\dfrac{\text{4 }\!\!\pi\!\!\text{ }}{\text{13}}\text{cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}} \right)$

Simplifying, 

$\text{L}\text{.H}\text{.S=2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}}\left[ \text{cos}\dfrac{\text{9 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+cos}\dfrac{\text{4 }\!\!\pi\!\!\text{ }}{\text{13}} \right]$

         $\text{=2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}}\left[ \text{2cos}\left( \dfrac{\dfrac{\text{9 }\!\!\pi\!\!\text{ }}{\text{13}}\text{+}\dfrac{\text{4 }\!\!\pi\!\!\text{ }}{\text{13}}}{\text{2}} \right)\text{cos}\dfrac{\dfrac{\text{9 }\!\!\pi\!\!\text{ }}{\text{13}}\text{-}\dfrac{\text{4 }\!\!\pi\!\!\text{ }}{\text{13}}}{\text{2}} \right]$

          $\text{=2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}}\left[ \text{2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{cos}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{26}} \right]$

Substituting $\text{cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{=0}$ , we get,

$\text{L}\text{.H}\text{.S=2cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{13}}\text{ }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 0 }\!\!\times\!\!\text{ cos}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{26}}$ 

           $\text{=0}$

           $=\text{R}\text{.H}\text{.S}$

Hence proved.


2. Prove that: $\left( \text{sin 3x+sin x} \right)\text{sin x+}\left( \text{cos 3x-cos x} \right)\text{cos x=0}$

Ans:

We know that, $\text{sin x+sin y=2sin}\left( \dfrac{\text{x+y}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{x-y}}{\text{2}} \right)$ 

And  $\text{cos x-cos y=-2sin}\left( \dfrac{\text{x+y}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{x-y}}{\text{2}} \right)$ 

Now, 

L.H.S.$\text{=}\left( \text{sin 3x+sin x} \right)\text{sin x+}\left( \text{cos 3x-cos x} \right)\text{cos x}$

           $\text{=sin 3x sin x+si}{{\text{n}}^{\text{2}}}\text{x+cos 3x cos x-co}{{\text{s}}^{\text{2}}}\text{x}$    (using the formula)

           $\text{=cos 3x cos x+sin 3x sin x-}\left( \text{co}{{\text{s}}^{\text{2}}}\text{x-si}{{\text{n}}^{\text{2}}}\text{x} \right)$

  Simplifying  we get,       

$\text{L}\text{.H}\text{.S=cos}\left( \text{3x-x} \right)\text{-cos 2x}\,$

         $\text{=cos 2x-cos 2x}$

         $\text{=0}$

         $=\text{R}\text{.H}\text{.S}\text{.}$


3. Prove that: ${{\left( \text{cos x+cos y} \right)}^{\text{2}}}\text{+}{{\left( \text{sin x-sin y} \right)}^{\text{2}}}\text{=4co}{{\text{s}}^{\text{2}}}\dfrac{\text{x+y}}{\text{2}}$

Ans: We know that, $\text{cos}\left( \text{x+y} \right)\text{=cos x cos y-sin xsin y}$

and  L.H.S$\text{=}{{\left( \text{cos x+cos y} \right)}^{\text{2}}}\text{+}{{\left( \text{sin x-sin y} \right)}^{\text{2}}}$

                  \begin{align} & \text{=co}{{\text{s}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{y+2cos x cos y+si}{{\text{n}}^{\text{2}}}\text{x+si}{{\text{n}}^{\text{2}}}\text{y-2sin x sin y} \\ &  \\ \end{align}

                 $\text{=}\left( \text{co}{{\text{s}}^{\text{2}}}\text{x+si}{{\text{n}}^{\text{2}}}\text{x} \right)\text{+}\left( \text{co}{{\text{s}}^{\text{2}}}\text{y+si}{{\text{n}}^{\text{2}}}\text{y} \right)\text{+2}\left( \text{cos x cos y-sin x sin y} \right)$

Simplifying and using the formula,

L.H.S$\text{=1+1+2cos}\left( \text{x+y} \right)$ 

         $\text{=2}\left[ \text{1+cos}\left( \text{x+y} \right) \right]$ 

         $\text{=2}\left[ \text{1+2co}{{\text{s}}^{\text{2}}}\dfrac{\left( \text{x+y} \right)}{\text{2}}\text{-1} \right]$ 

 [since $\text{2co}{{\text{s}}^{\text{2}}}\dfrac{\left( \text{x+y} \right)}{\text{2}}\text{-1=cos}\left( \text{x+y} \right)$ ]

          $\text{=4co}{{\text{s}}^{\text{2}}}\left( \text{x+y} \right)$ 

Therefore  L.H.S$=$ R.H.S

Hence proved.


4. Prove that:  ${{\left( \text{cos x-cos y} \right)}^{\text{2}}}\text{+}{{\left( \text{sin x-sin y} \right)}^{\text{2}}}\text{=4si}{{\text{n}}^{\text{2}}}\dfrac{\text{x-y}}{\text{2}}$ 

Ans: We know that, $\text{cos}\left( \text{x-y} \right)\text{=cos x cos y+sin x sin y}$ 

L.H.S.$\text{=}{{\left( \text{cos x-cos y} \right)}^{\text{2}}}\text{+}{{\left( \text{sin x-sin y} \right)}^{\text{2}}}$

           $\text{=co}{{\text{s}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{y-2cos x cos y+si}{{\text{n}}^{\text{2}}}\text{x+si}{{\text{n}}^{\text{2}}}\text{y-2sin x sin y}$

           \[\text{=}\left( \text{co}{{\text{s}}^{\text{2}}}\text{x+si}{{\text{n}}^{\text{2}}}\text{x} \right)\text{+}\left( \text{co}{{\text{s}}^{\text{2}}}\text{y+si}{{\text{n}}^{\text{2}}}\text{y} \right)\text{-2}\left[ \text{cos x cos y+sin x sin y} \right]\]

Simplifying and using the formula  we get,

         L.H.S $\text{=1+1-2}\left[ \text{cos}\left( \text{x-y} \right) \right]\,\,$

                   $\text{=2}\left[ \text{1-cos}\left( \text{x-y} \right) \right]$

                   $\text{=2}\left[ \text{1-}\left\{ \text{1-2si}{{\text{n}}^{\text{2}}}\left( \dfrac{\text{x-y}}{\text{2}} \right) \right\} \right]\,$ 

[since  $\text{1-2si}{{\text{n}}^{\text{2}}}\dfrac{\left( \text{x-y} \right)}{\text{2}}\text{=cos}\left( \text{x-y} \right)$ ]

                   $\text{=4si}{{\text{n}}^{\text{2}}}\left( \dfrac{\text{x-y}}{\text{2}} \right)$ 

Therefore  L.H.S$=$ R.H.S

Hence proved.


5. Prove that: $\text{sin x+sin 3x+sin 5x+sin 7x=4cos xcos 2xsin 4x}$

Ans: We  know  that $\text{sin A+sin B=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

$\text{L}\text{.H}\text{.S}\text{. =sin x+sin 3x+sin 5x+sin 7x}$

            \[\text{=}\left( \text{sin x+sin 5x} \right)\text{+}\left( \text{sin 3x+sin 7x} \right)\]      

Using the formula and simplifying,

          $\text{=2sin}\left( \dfrac{\text{x+5x}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{x-5x}}{\text{2}} \right)\text{+2sin}\left( \dfrac{\text{3x+7x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{3x-7x}}{\text{2}} \right)$       

          \[\text{=2cos 2x}\left[ \text{sin 3x+sin 5x} \right]\]

          \[\text{=2cos 2x}\left[ \text{2sin}\left( \dfrac{\text{3x+5x}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{3x-5x}}{\text{2}} \right) \right]\] 

          \[\text{=2cos 2x}\left[ \text{2sin 4x}\text{.cos}\left( \text{-x} \right) \right]\] 

Therefore we have,

\[\text{L}\text{.H}\text{.S=4cos 2x sin 4x cos x}\] 

           \[=\text{R}\text{.H}\text{.S}\]


6. Prove that: $\dfrac{\left( \text{sin 7x+sin 5x} \right)\text{+}\left( \text{sin 9x+sin 3x} \right)}{\left( \text{cos 7x+cos 5x} \right)\text{+}\left( \text{cos 9x+cos 3x} \right)}\text{=tan 6x}$

Ans: We  known that,

$\text{sinA+sinB=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

And $\text{cos A+cos B=2cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

$\text{L}\text{.H}\text{.S}\text{. =}\dfrac{\left( \text{sin 7x+sin 5x} \right)\text{+}\left( \text{sin9x+sin3x} \right)}{\left( \text{cos 7x+cos 5x} \right)\text{+}\left( \text{cos9x+cos3x} \right)}$

Using the formula and simplifying,

          $\text{=}\dfrac{\left[ \text{2sin}\left( \dfrac{\text{7x+5x}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{7x-5x}}{\text{2}} \right) \right]\text{+}\left[ \text{2sin}\left( \dfrac{\text{9x+3x}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{9x-3x}}{\text{2}} \right) \right]}{\left[ \text{2cos}\left( \dfrac{\text{7x+5x}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{7x-5x}}{\text{2}} \right) \right]\text{+}\left[ \text{2cos}\left( \dfrac{\text{9x+3x}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{9x-3x}}{\text{2}} \right) \right]}$

          $\text{=}\dfrac{\left[ \text{2sin 6x}\text{.cos x} \right]\text{+}\left[ \text{2sin 6x}\text{.cos 3x} \right]}{\left[ \text{2cos 6x}\text{.cos x} \right]\text{+}\left[ \text{2cos 6x}\text{.cos 6x} \right]}$

          $\text{=}\dfrac{\text{2sin 6x}\left[ \text{cos x+cos 3x} \right]}{\text{2cos 6x}\left[ \text{cos x+cos 3x} \right]}$

           $\text{=tan 6x}$

Therefore L.H.S$=$ R.H.S

Hence  proved.


7. Prove that: 

$\text{sin 3x+sin 2x-sin x=4sin xcos}\dfrac{\text{x}}{\text{2}}\text{cos}\dfrac{\text{3x}}{\text{2}}$

Ans: We know that,

$\text{sin A+sin B=2sin}\left( \dfrac{\text{A+B}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{A-B}}{\text{2}} \right)$

And  $\text{sin A-sin B=2sin}\left( \dfrac{\text{A-B}}{\text{2}} \right)\text{.cos}\left( \dfrac{\text{A+B}}{\text{2}} \right)$ 

$\text{L}\text{.H}\text{.S}\text{.=sin3x+sin2x-sinx}$

          $\text{=sin 3x+}\left[ \text{2cos}\left( \dfrac{\text{2x+x}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{2x-x}}{\text{2}} \right) \right]\,$

          $\text{=sin 3x+}\left[ \text{2cos}\left( \dfrac{\text{3x}}{\text{2}} \right)\text{sin}\left( \dfrac{\text{x}}{\text{2}} \right) \right]$

Since we know that, $\text{sin 2x=2sin xcos x}$ 

$\text{L}\text{.H}\text{.S=2sin}\dfrac{\text{3x}}{\text{2}}\text{.cos}\dfrac{\text{3x}}{\text{2}}\text{+2cos}\dfrac{\text{3x}}{\text{2}}\text{sin}\dfrac{\text{x}}{\text{2}}\,\,\,\,\,\,$

         $\text{=2cos}\left( \dfrac{\text{3x}}{\text{2}} \right)\left[ \text{sin}\left( \dfrac{\text{3x}}{\text{2}} \right)\text{+sin}\left( \dfrac{\text{x}}{\text{2}} \right) \right]$

         \[\text{=2cos}\left( \dfrac{\text{3x}}{\text{2}} \right)\left[ \text{2sin}\left\{ \dfrac{\left( \dfrac{\text{3x}}{\text{2}} \right)\text{+}\left( \dfrac{\text{x}}{\text{2}} \right)}{\text{2}} \right\}\text{cos}\left\{ \dfrac{\left( \dfrac{\text{3x}}{\text{2}} \right)\text{-}\left( \dfrac{\text{x}}{\text{2}} \right)}{\text{2}} \right\} \right]\]

          $\text{=2cos}\left( \dfrac{\text{3x}}{\text{2}} \right)\text{.2sin xcos}\left( \dfrac{\text{x}}{\text{2}} \right)$

Therefore 

 $\text{L}\text{.H}\text{.S=4sin xcos}\left( \dfrac{\text{x}}{\text{2}} \right)\text{cos}\left( \dfrac{\text{3x}}{\text{2}} \right)$

          $\text{=R}\text{.H}\text{.S}$ 


8.Find $\text{sin}\dfrac{\text{x}}{\text{2}}\text{,cos}\dfrac{\text{x}}{\text{2}}$ and $\text{tan}\dfrac{\text{x}}{\text{2}}$ ,if $\text{tanx=-}\dfrac{\text{4}}{\text{3}}$ , $\text{x}$ lies in 2nd quadrant.   

Ans: Here, $\text{x}$ is in 2nd quadrant.

Therefore ,

$\text{ }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{x }\!\!\pi\!\!\text{ }$

i.e,  $\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}<\dfrac{\text{x}}{\text{2}}<\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$

hence $\dfrac{\text{x}}{\text{2}}$ lies in 1st quadrant.

Therefore, \[\text{sin}\dfrac{\text{x}}{\text{2}}\text{,cos}\dfrac{\text{x}}{\text{2}}\,\,\,\] and $\text{tan}\dfrac{\text{x}}{\text{2}}$ are positive.

 Given that $\text{tan x=-}\dfrac{\text{4}}{\text{3}}$

We know that, $\text{se}{{\text{c}}^{\text{2}}}\text{x=1+ta}{{\text{n}}^{\text{2}}}\text{x}$

$\text{se}{{\text{c}}^{\text{2}}}\text{x=1+ta}{{\text{n}}^{\text{2}}}\text{x}$

         $\text{=1+}{{\left( \text{-}\dfrac{\text{4}}{\text{3}} \right)}^{\text{2}}}$ 

         \[\text{=}\dfrac{\text{25}}{\text{9}}\]

As \[\text{x}\] is in 2nd quadrant, $\text{sec x}$ is negative.

Therefore , $\text{secx=-}\dfrac{\text{5}}{\text{3}}$ 

Then $\text{cos x=-}\dfrac{\text{3}}{\text{5}}$ 

Now we know that, $\text{2co}{{\text{s}}^{\text{2}}}\dfrac{\text{x}}{\text{2}}\text{=cos x+1}$ 

Computing we get, $\text{2co}{{\text{s}}^{\text{2}}}\dfrac{\text{x}}{\text{2}}\text{=}\dfrac{\text{2}}{\text{5}}$ 

Hence \[\text{cos}\dfrac{\text{x}}{\text{2}}\text{=}\dfrac{\text{1}}{\sqrt{\text{5}}}\] 

Now we know that, $\text{si}{{\text{n}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{x=1}$ 

Therefore substituting $\text{cos}\dfrac{\text{x}}{\text{2}}\text{=}\dfrac{\text{1}}{\sqrt{\text{5}}}$ and computing ,

$\text{sin}\dfrac{\text{x}}{\text{2}}\text{=}\dfrac{\text{2}}{\sqrt{\text{5}}}$ 

Hence ,

$\text{tan}\dfrac{\text{x}}{\text{2}}\text{=}\dfrac{\text{sin}\dfrac{\text{x}}{\text{2}}}{\text{cos}\dfrac{\text{x}}{\text{2}}}$ 

          $=2$ 

Thus, the respective values of$\text{sin}\dfrac{\text{x}}{\text{2}}\text{,cos}\dfrac{\text{x}}{\text{2}}\,\text{,tan}\dfrac{\text{x}}{\text{2}}\,$

are $\,\dfrac{2\sqrt{5}}{5},\dfrac{\sqrt{5}}{5},\,\,2$ .


9.Find $\text{sin}\dfrac{\text{x}}{\text{2}}\text{,cos}\dfrac{\text{x}}{\text{2}}$ and $\text{tan}\dfrac{\text{x}}{\text{2}}$ ,if $\cos x\text{=-}\dfrac{1}{\text{3}}$ , $\text{x}$ lies in 3rd quadrant.   

Ans: Here, $\text{x}$ is in 3rd quadrant.

Therefore ,

$\text{  }\!\!\pi\!\!\text{ x}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{2}}$

i.e,  $\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{}\dfrac{\text{x}}{\text{2}}\text{}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}$

hence $\dfrac{\text{x}}{\text{2}}$ lies in 2nd quadrant.

Therefore, $\text{cos}\dfrac{\text{x}}{\text{2}}\,\,\,$ and $\text{tan}\dfrac{\text{x}}{\text{2}}$ are negative and $\text{sin}\dfrac{\text{x}}{\text{2}}$ is positive.

 Given that $\text{cos x=-}\dfrac{1}{\text{3}}$

Now we know that, $\text{2co}{{\text{s}}^{\text{2}}}\dfrac{\text{x}}{\text{2}}\text{=cosx+1}$ 

Computing we get, $\text{2co}{{\text{s}}^{\text{2}}}\dfrac{\text{x}}{\text{2}}\text{=}\dfrac{\text{2}}{\text{3}}$ 

Hence $\text{cos}\dfrac{\text{x}}{\text{2}}\text{=-}\dfrac{\text{1}}{\sqrt{\text{3}}}$ 

Now we know that, $\text{si}{{\text{n}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{x=1}$ 

Therefore substituting $\text{cos}\dfrac{\text{x}}{\text{2}}\text{=-}\dfrac{\text{1}}{\sqrt{\text{3}}}$ and computing ,

$\text{sin}\dfrac{\text{x}}{\text{2}}\text{=}\sqrt{\dfrac{\text{2}}{\text{3}}}$ 

Hence ,

$\text{tan}\dfrac{\text{x}}{\text{2}}\text{=}\dfrac{\text{sin}\dfrac{\text{x}}{\text{2}}}{\text{cos}\dfrac{\text{x}}{\text{2}}}$ 

          $\text{=-}\sqrt{\text{2}}$ 

Thus, the respective values of $\text{sin}\dfrac{\text{x}}{\text{2}}\text{,cos}\dfrac{\text{x}}{\text{2}}\,\text{,tan}\dfrac{\text{x}}{\text{2}}\,$

are  $\,\sqrt{\dfrac{\text{2}}{\text{3}}}\text{,-}\dfrac{\text{1}}{\sqrt{\text{3}}}\text{,}\,\text{-}\,\sqrt{\text{2}}$.


10.Find$\text{sin}\dfrac{\text{x}}{\text{2}}\text{,cos}\dfrac{\text{x}}{\text{2}}$ and $\text{tan}\dfrac{\text{x}}{\text{2}}$ ,if $\text{sin x=}\dfrac{1}{4}$ , $\text{x}$ lies in 2nd quadrant.   

Ans: Here, $\text{x}$ lies in 2nd quadrant.

Therefore ,

$\text{ }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{x }\!\!\pi\!\!\text{ }$

i.e,  $\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}<\dfrac{\text{x}}{\text{2}}<\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$

hence  $\dfrac{\text{x}}{\text{2}}$ lies in 1st quadrant.

Therefore, $\text{sin}\dfrac{\text{x}}{\text{2}}\text{,cos}\dfrac{\text{x}}{\text{2}}\,\,\,$ and $\text{tan}\dfrac{\text{x}}{\text{2}}$ are positive.

 Given that $\text{sin x=}\dfrac{\text{1}}{\text{4}}$

Now we know that, $\text{si}{{\text{n}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{x=1}$ 

Therefore substituting $\text{sin x=}\dfrac{\text{1}}{\text{4}}$ and computing ,

$\text{cos x=-}\dfrac{\sqrt{\text{15}}}{\text{4}}$ 

since $\text{x}$ lies in 2nd quadrant,  $\text{cos x}$ is negative.

Now we know that, $\text{2si}{{\text{n}}^{\text{2}}}\dfrac{\text{x}}{\text{2}}\text{=1-cos x}$ 

Computing we get, $\text{2si}{{\text{n}}^{\text{2}}}\dfrac{\text{x}}{\text{2}}\text{=1+}\dfrac{\sqrt{\text{15}}}{\text{4}}$ 

Hence $\text{sin}\dfrac{\text{x}}{\text{2}}\text{=}\sqrt{\dfrac{\text{4+}\sqrt{\text{15}}}{\text{8}}}$ 

Now we know that, $\text{si}{{\text{n}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{x=1}$ 

Therefore substituting $\text{sin}\dfrac{\text{x}}{\text{2}}\text{=}\sqrt{\dfrac{\text{4+}\sqrt{\text{15}}}{\text{8}}}$ and computing ,

$\text{cos}\dfrac{\text{x}}{\text{2}}\text{=}\sqrt{\dfrac{\text{4-}\sqrt{\text{15}}}{\text{8}}}$ 

Hence ,

$\text{tan}\dfrac{\text{x}}{\text{2}}\text{=}\dfrac{\text{sin}\dfrac{\text{x}}{\text{2}}}{\text{cos}\dfrac{\text{x}}{\text{2}}}$ 

          $\text{=}\dfrac{\sqrt{\text{4+}\sqrt{\text{15}}}}{\sqrt{\text{4-}\sqrt{\text{15}}}}$ 

       \[\text{=4+}\sqrt{\text{15}}\] 

Thus, the respective values of $\text{sin}\dfrac{\text{x}}{\text{2}}\text{,cos}\dfrac{\text{x}}{\text{2}}\,\text{,tan}\dfrac{\text{x}}{\text{2}}\,$

are  $\sqrt{\dfrac{\text{4+}\sqrt{\text{15}}}{\text{8}}}\text{,}\sqrt{\dfrac{\text{4-}\sqrt{\text{15}}}{\text{8}}}\text{,4+}\sqrt{\text{15}}$ .


NCERT Solutions for Class 11 Maths Chapter 3 Subtopics

Before wandering into the conceptual details of Trigonometric Functions Class 11, you can have a look at the summary of all topics discussed in this chapter.


Section 1: Introduction

In this part, students are introduced to fundamental trigonometric functions and their application. You will be required to perform calculations of distances based on these ratios.


Section 2: Angles

Class 11 Maths Trigonometry comes with four subsections under this topic. Students will learn about measurement of angles in different units, radians and degrees, and relations between them. Solutions to numerical sums involving the conversion of angle measurements from one form to another have been discussed in detail in NCERT Solutions for Class 11 Maths Chapter 3.


Section 3: Trigonometric Functions

This section deals with two topics. First one teaches the signs and symbols of generalised trigonometric functions in all four quadrants of a graph. In the next subsection, students will be acquainted with the domain and range of the different functions, that is, how the value of a function increases or decreases for an increasing angle value. You can find tables and detailed explanations on the working of these concepts in Trigonometric Functions Class 11 NCERT Solutions.


Section 4: Trigonometric Functions of Sum and Difference of Two Angles

The concluding section of Chapter 3 Maths Class 11 PDF focuses on the derivation of formulas and expressions based on trigonometric functions of the sums and differences between two angles. These formulas have been explained with the help of examples. Students must have a clear understanding of these as they make up an important part of geometric evaluations and are applied in a wide range of calculations.


Overview of Deleted Syllabus for CBSE Class 11 Maths Chapter - Trigonometric functions

Chapter

Dropped Topics

Trigonometric Functions

3.5 - Trigonometric Equations up to Exercise 3.4

Summary the last 5 points

3.6 -Proofs and Simple Applications of Sine and Cosine Formulae



Class 11 Maths Chapter 3: Exercises Breakdown

Exercise

Number of Questions

Exercise 3.1

7 Questions and Solutions 

Exercise 3.2

10 Questions and Solutions 

Exercise 3.3

25 Questions and Solutions




Conclusion

The Class 11 Maths Ch 3 , "Trigonometric Functions," covers essential concepts including trigonometric ratios, identities, and equations. It is vital for understanding advanced mathematics. Typically, 2-3 questions from this chapter appear in exams, focusing on applications and problem-solving involving these functions.


By Understanding of this chapter lays a strong foundation for future topics in calculus and analytical geometry. Practising a variety of problems is crucial for success in this chapter and in subsequent mathematical studies.


Other Study Material for CBSE Class 11 Maths Chapter 3



Chapter-Specific NCERT Solutions for Class 11 Maths 2024-25

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

FAQs on NCERT Solutions for Class 11 Maths Chapter 3 - Trigonometric Functions

1. What are the basic trigonometric functions?

In Mathematics, trigonometric functions are fundamental functions used to denote relation of the angles of a right-angled triangle to the length of its sides.


There are six trigonometric ratios in total, the basic three being sine, cosine, and tangent. The other three are described in relation to previously-discussed basic functions and are called cosecant, secant and cotangent.


In a given right-angled triangle, values of these ratios are calculated for a specific angle θ in terms of its sides in the following manner.


sin θ = opposite side / hypotenuse

cos θ = adjacent side / hypotenuse

tan θ = sin θ / cos θ = opposite site / adjacent side

cosec θ = 1 / sin θ

sec θ = 1 / cos θ

cot θ = cos θ / sin θ = 1 / tan θ

2. How are Radians and Degrees related?

A Radian (denoted by rad or c) is a standard unit of measuring angles whose value is based on the relationship between the length of an arc and radius of a circle.


rad = arc length / radius of circle


In a lot of cases, you might be required to convert given angle values in Radian into Degree. For that, the relation between these two units can be derived as follows.  


For a full circle with radius r and angle 360o, the arc length is equal to circumference C.


Therefore, arc length = C = 2πr.


From the first relation, 360o in radians will be

rad = 2πr / r = 2π

Therefore, 2π rad = 360o,

that is, 1 rad = 180o / π.

This brings us to the final relationship that is, degree = radian x 180 / π.

3. What can you learn from Trigonometry Class 11 NCERT Solutions PDF?

Chapter 3 Maths Class 11 covers the vast and complex topic of trigonometric functions and their applications. This chapter comes with a total of four subsections dealing with concepts like measuring angles in degrees and radians and their interconversion, sine and cosine formulas in terms of variable angles x and y, finding solutions of trigonometric values, and so on.


NCERT Solutions for Class 11 Maths Chapter 3 comes with comprehensive answers to questions from all four exercises given in textbooks. Solutions to numerical sums have been explained in a step-by-step manner. You will learn about the applications of trigonometric equations in the vast field of science and be able to recognise these functions in Physics and Chemistry.

4. How do you solve trigonometric functions in Class 11 Maths?

Trigonometry can be a tricky topic. However, the students who have a good grasp of the basics of trigonometry seem to solve the problems in a better way. The first thing to remember while solving the trigonometric functions is to know the formulae and their applications. Vedantu offers a complete guide and the PDF of the solutions of the exercise given in the NCERT textbook. The solutions are provided free of cost in a step-by-step manner and are easy to comprehend.

5. Is Chapter 3 of Class 11 Maths hard?

A lot of students may find Trigonometry difficult. However, if the concepts are clear and they have a good hold on the basics of Trigonometry, then it seems easy. As trigonometry is all about the relation between the angles and sides of the triangle, students need to know the basic formulae and their applications to solve the problems. Vedantu offers solutions that are verified by the subject-matter-expert and are also solved comprehensively. 

6. What are the important topics in Chapter 3 of Class 11 Maths?

In Class 11 Mathematics, Chapter 3 is all about trigonometry. This chapter includes all about the relation between the angles and the sides of the triangles and their applications. Whenever there is a need to solve the trigonometric functions, a student must have a good grasp of the identities and the formula. The value table of all the trigonometric functions for different angles must be remembered for solving problems. Vedantu offers the solution to all the exercises provided in the NCERT Textbook in a step-by-step manner. 

7. What is Trigonometry for Class 11 Students?

Trigonometry is a section of Mathematics, which provides an understanding of the relation between the angles and the sides of the triangle. This chapter can be tricky for most students. But, the students can ace their exams by practising numerous questions and knowing the formulae and their applications. Vedantu offers the best learning guide and the PDF of the solutions that are verified by the subject-matter-experts. Students can either refer to it online or by downloading the PDF for free to refer to it offline. 

8. How can Trigonometry of Class 11 be made easy to study?

Trigonometry seems difficult for most of the students. Few of the ways to make it easy is to always choose the side that is complex, denote or represent all the trigonometric functions into sine and cosine, focus on the formulae and the signs, and grasp the basics of cancelling the terms, rationalizing, and expanding. Vedantu offers an explanation based solution that is easy to follow and score. 

9. What are the applications of Trigonometry in real life?

As trigonometry involves the relationship between the sides and angles, finding the height, and calculating the distance, it has a wide range of applications in marine biology, navigation, aviation department, etc. It is also used in solving major mathematical calculations such as Calculus and Algebra. Vedantu provides a solution guide suitable for all the students with solutions that are verified by experienced experts. The solutions are available on both Vedantu’s website and its app at free of cost.

10. Is Trigonometry Class 11 PDF solutions important?

Understanding Trigonometry Class 11 PDF Solutions is crucial for several reasons:

  • Foundation for Higher Maths: Trigonometry is essential for success in calculus, complex numbers, and vectors.

  • Applications in Various Fields: Trigonometry has practical applications in physics, engineering, computer graphics, and navigation.

  • Develops Problem-Solving Skills: Studying trigonometry helps develop critical thinking and problem-solving skills.

  • Gateway to Further Exploration: Trigonometry can lead to more advanced mathematical topics with exciting real-world applications.

11. What is the main theorem of trigonometry?

The main theorem of Trigonometry Class 11 is not a single one, but there are a few fundamental identities that are incredibly important. Here are two of the most significant:

  • Pythagorean Identity: This identity relates the sine and cosine functions of an angle and is written as sin²(θ) + cos²(θ) = 1. It essentially states that in a right-angled triangle, the square of the sine (opposite side over hypotenuse) plus the square of the cosine (adjacent side over hypotenuse) will always equal 1. This identity is a direct extension of the Pythagorean Theorem applied to trigonometric ratios.

  • Unit Circle Definition: While not technically a theorem, the concept of the unit circle is crucial in trigonometry. It's a circle centered at the origin with a radius of 1. By associating angles with coordinates on this circle, we can define the sine, cosine, and tangent functions for any angle. This geometric representation helps visualize the relationships between the trigonometric functions and underpins many other trigonometric identities.

These two foundations (Pythagorean Identity and Unit Circle) form the basis for deriving other important trigonometric identities and solving trigonometric problems.

12. What are the functions of trigonometry?

Trigonometry isn't a single function, but a fascinating branch of mathematics that introduces a set of functions that unlock powerful connections between angles and the sides of right triangles. These functions, sine (sin), cosine (cos), and tangent (tan), along with their reciprocals, cotangent (cot), secant (sec), and cosecant (csc), play a vital role in various mathematical and scientific disciplines.


Imagine a right triangle. The sine function (sin) represents the ratio of the side opposite the angle (θ) to the triangle's hypotenuse (the longest side). The cosine function (cos) focuses on the adjacent side (the side next to the angle) relative to the hypotenuse. Finally, the tangent function (tan) relates the opposite side to the adjacent side. These functions provide a way to calculate missing side lengths or angles when some information is already known within a right triangle.

13. What are the symbols for trigonometry?

In Trigonometry class 11 solutions , we deal with functions that relate angles to the ratios of sides in right triangles. These functions have specific symbols for easy representation:

  • Sine: Represented by the symbol "sin"

  • Cosine: Represented by the symbol "cos"

  • Tangent: Represented by the symbol "tan"

  • Cotangent: Represented by the symbol "cot" (sometimes written as "cotang")

  • Secant: Represented by the symbol "sec"

  • Cosecant: Represented by the symbol "csc" (sometimes written as "cosec")

These symbols are typically followed by an opening parenthesis, then the angle in degrees or radians, and a closing parenthesis. For instance, sin(30°) represents the sine of a 30-degree angle.

14. What is the aim of trigonometric functions?

The aim of trigonometric functions is to establish relationships between the angles and sides of triangles.


These functions are essential for:

  • Triangle Solutions: They allow the calculation of unknown sides and angles in triangles, especially right triangles.

  • Modelling Periodic Behavior: Trigonometric functions describe repetitive patterns, such as sound waves, light waves, and tides, which are naturally periodic.

  • Studying Rotational Dynamics: They are key to understanding objects in circular or rotational motion, crucial in fields like physics and engineering.

  • Facilitating Calculus: Trigonometric functions play a significant role in calculus, particularly in dealing with integrals and derivatives of periodic functions.

  • Geometry Applications: They provide essential tools for solving geometric problems that involve angles and distances.

  • Fourier Analysis: They are fundamental in breaking down complex periodic functions into simpler sine and cosine components, important in signal processing and other applications.

In summary, trigonometric functions are vital in numerous disciplines, helping solve practical problems involving angles, distances, and periodic patterns.