Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability

ffImage
banner

Complete Resource for NCERT Class 12 Maths Chapter 5 Solutions - Free PDF Download

The NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability cover all of the chapter's questions (All Exercises and Miscellaneous Exercise solutions). These NCERT Solutions for Class 12 Maths have been carefully compiled and created in accordance with the most recent CBSE Syllabus 2023-24 updates. Students can use these NCERT Solutions for Class 12 to reinforce their foundations. Subject experts at Vedantu has created the continuity and differentiability class 12 NCERT solutions to ensure they match the current curriculum and help students while solving or practicing problems.

toc-symbolTable of Content
toggle-arrow


Glance of NCERT Solutions for Class 12 Maths Chapter 5 | Vedantu

  • A function is considered continuous at a point if its output (y-value) changes smoothly as the input (x-value) approaches that point. There are no abrupt jumps or breaks.

  • The chapter explores different types of continuities - one-sided limits, two-sided limits, and continuity at a point.

  • Differentiability essentially means the function has a smooth, well-defined slope at each point. The slope is represented by the derivative of the function.

  • The chapter covers methods to find the derivative of various functions, including algebraic functions, exponential and logarithmic functions, trigonometric functions, inverse trigonometric functions, and functions defined parametrically.

  • This article contains chapter notes, exercises, links  and important questions for Chapter 5 - Continuity and Differentiability which you can download as PDFs.

  • There are eight exercises and one miscellaneous exercise (144 fully solved questions) in class 12th maths chapter 5 Continuity and Differentiability.


Access Exercise Wise NCERT Solutions for Chapter 5 Maths Class 12

Courses
Competitive Exams after 12th Science
More Free Study Material for Continuity and Differentiability
icons
Revision notes
850.5k views 10k downloads
icons
Important questions
776.4k views 12k downloads
icons
Ncert books
787.8k views 11k downloads

Exercises under NCERT Class 12 Maths Chapter 5 Continuity and Differentiability

Chapter 5 of NCERT Class 12 Maths textbook covers Continuity and Differentiability. The chapter is divided into nine exercises which are briefly summarized as follows:


Exercise 5.1: This exercise deals with the concept of continuity of a function, and how to check the continuity of a function using algebraic techniques.


Exercise 5.2: The Intermediate Value Theorem is introduced in this exercise, which is used to prove the existence of roots of equations.

Exercise 5.3: This exercise covers the concept of differentiability of a function, and the differentiability of algebraic and trigonometric functions are explored.

Exercise 5.4: The chain rule is introduced in this exercise, which is used to find the derivative of composite functions.

Exercise 5.5: This exercise covers the derivative of implicit functions and related rates problems.

Exercise 5.6: The derivatives of inverse trigonometric functions and logarithmic functions are explored in this exercise.

Exercise 5.7: This exercise covers the derivatives of functions expressed in parametric form.

Exercise 5.8: This exercise explores the concept of derivatives of functions expressed in polar form.

Miscellaneous Exercise: This exercise contains additional problems related to continuity and differentiability.


Overall, these exercises provide a comprehensive understanding of the concepts of continuity and differentiability, and how to apply them to solve various mathematical problems.


Access NCERT Solutions for Class 12 Maths Chapter 5 – Continuity and Differentiability

Exercise 5.1

1. Prove that the function  f(x)=5x-3  is a continuous at  x=0 , at  x=-3  and at  x=5 .

Ans: The given function is  f(x)=5x-3 .

At  x=0f(0)=5 × 0-3=-3 .

Taking limit as  x0  both sides of the function give

limx0f(x)=limx0(5x-3)=5 × 0-3=-3 

limx0f(x)=f(0) .

Thus,  f  satisfies continuity at  x=0 .

Again, at  x = -3,f(-3)=5 × (-3)-3=-18 .

Now, taking limit as  x3  both sides of the function give

limx3f(x)=limx3f(5x-3)=5 × (-3)-3=-18 

limx3f(x)=f(-3) .

Therefore,  f  satisfies continuity at  x=-3 

Also, at  x=5,f(x)=f(5)=5 × 5-3=25-3=22 .

Taking limit as  x5  both sides of the function give

limx5f(x)=limx5(5x-3)=5 × 5-3=22 

limx5f(x)=f(5) .

Hence,  f  satisfies continuity at  x=5 .


2. Examine the continuity of the function  f(x)=2x2-1  at  x=3 .

Ans: The given function is  f(x)=2x2-1 .

Now, at  x=3, f(3)=2 × 32-1=17 .

Taking limit as  x3  both sides of the function give

 limx3f(x)=limx3(2x2-1)=2 × 32-1=17 

limx3f(x)=f=(3) .

Hence,  f  satisfies continuity at  x=3 .


3. Examine the following functions for continuity.

(a)  f(x)=x-5 

Ans: The given function is  f(x)=x-5 .

It is assured that for every real number  kf  is defined and its value at  k  is  k-5 . Also, it can be noted that 

limxkf(x)=limxkf(x-5)=k=k-5=f(k) .

limxkf(x)=f(k) 

Hence,  f  satisfies continuity at every real number and so, it is a continuous function.


(b)  f(x)=1x-5,x5 

Ans: The given function is

f(x)=1x-5 .

Let  k5  is any real number, then taking limit as  xk  both sides of the function give

limxkf(x)=limxk1x-5=1k-5 

Also,  f(k)=1k-5  , since  k5 

limxkf(x)=f(k) 

Therefore,  f  satisfies continuity at every point in the domain of  f  and so, it is a continuous function.


(c)  f(x)=x2-25x+5,x5 

Ans: The given function is

f(x)=x2-25x+5, x5 

Now let  c-5  be any real number, then taking limit as  xc  on both sides of the function give

limxcf(x)=limxcx2-25x+5=limxc(x+5)(x-5)x+5=limxc(x-5)=(c-5) 

Again,  f(c)=(c+5)(c-5)c+5=(c-5) , since  c5 .

Hence,  f  satisfies continuity at every point in the domain of  f  and so it is a continuous function.


(d)  f(x)=|x-5| 

Ans: The given function is  f(x)=|x-5|={5-x, if x<5x-5, if x5 .

Note that,  f  is defined at all points in the real line. So, let assume  c  be a point on a real line. 

Then, we have  c<5  or  c=5  or  c>5 .

Now, let's discuss these three cases one by one.

Case (i).  c<5 

Then, the function becomes  f(c)=5-c .

Now,  limxcf(x)=limxc(5-x)=5-c .

limxcf(x)=f(c) .

Therefore,  f  is continuous at all real numbers which are less than  5

Case (ii).  c=5 

Then,  f(c)=f(5)=(5-5)=0 .

Now,

limx5f(x)=limx5(5-x)=(5-5)=0  and

limx5+f(x)=limx5(x-5)=0 .

Therefore, we have

limxcf(x)=limxc+f(x)=f(c) .

Thus,  f  satisfies continuity at  x=5 , and so  f  is continuous at  x=5 .

Case (iii).  c>5 

Then we have,  f(c)=f(5)=c-5 .

Now,

limxcf(x)=limxc(x-5)=c-5 .

Therefore,

limxcf(x)=f(c) .

So,  f  is continuous at all real numbers that are greater than  5 .

Thus,  f  satisfies continuity at every real number and hence, it is a continuous function.


4. Prove that the function  f(x)=xn   is continuous at  x=n , where  n  is a positive integer.

Ans: The given function is   f(x)=xn .

We noticed that the function  f  is defined at all positive integers  n  and also its value at  x=n  is  nn .

Therefore,  limxnf(n)=limxnf(xn)=nn .

So,  limxnf(x)=f(n) .

Thus, the function  f(x)=xn   is continuous at  x=n  , where  n  is a positive integer.


5. Is the function  f  defined by 

f(x)={x,if x15, if x>1 

continuous at  x=0x=1 ?  At  x=2 ?

Ans: The given function isf(x)={x, if x15, if x>1

It is obvious that the function  f  is defined at  x=0  and its value at  x=0  is  0 .

Now,  limx0f(x)=limx0x=0 .

So,  limx0f(x)=f(0) .

Hence, the function  f  satisfies continuity at  x=0 .


It can be observed that  f  is defined at  x=1  and its value at this point is  1 .

Now, the left-hand limit of the function  f  at  x=1  is

limx1f(x)=limx1x=1 .

Also, the right-hand limit of the function  f  at  x=1  is

limx1+f(x)=limx1+f(5) 

Therefore,  limx1f(x)limx1+f(x) .

Thus,  f  is not continuous at  x=1 


It can be found that  f  is defined at  x=2  and its value at this point is  5 .

That is,  limx2f(x)=limx2f(5)=5 .

Therefore,  limx2f(x)=f(2) 

Hence,  f  satisfies continuity at  x=2 .


Find all points of discontinuity of   f , where  f  is defined by

6.  f(x)={2x+3, if x22x-3, if x>2 .

Ans: The given function is f(x)={2x+3, if x22x-3, if x>2

It can be observed that the function  f  is defined at all the points in the real line.

Let consider  c  be a point on the real line. Then, three cases may arise.

I. c<2 

II. c>2 

III. c=2 

Case (i). When  c<2 

Then, we have  limxcf(x)=limx(2x+3)=2c+3 .

Therefore,

limxcf(x)=f(c) .

Hence,  f  attains continuity at all points  x , where  x<2 .

Case (ii). When  c>2 

Then, we have   f(c)=2c-3 .

So,

limxcf(x)=limx(2x-3)=2c-3 .

Therefore,  limxcf(x)=f(c) .

Hence,  f  satisfies continuity at all points  x  , where  x>2 .

Case(iii). When  c=2 

Then, the left-hand limit of the function  f  at  x=2  is

limx2f(x)=limx2(2x+3)=2 × 2+3=7  and 

the right-hand limit of the function  f  at  x=2  is,

limx2+f(x)=limx2+(2x+3)=2 × 2-3=1 .

Thus, at  x=2limx2f(x)limx2+f(x) .

So, the function   f  does not satisfy continuity at  x=2 .

Hence,  x=2  is the only point of discontinuity of the function  f(x) .


7.  f(x)={|x|+3,ifx32x,if3<x<36x+2,ifx3 

Ans: The given function isf(x)={|x|+3, if x-3-2x, if -3<x<36x+2, if x3

Observe that,  f  is defined at all the points in the real line.

Now, let assume  c  as a point on the real line.

Then five cases may arise. Either  c<-3 , or  c=-3  or  -3<c<3 , or  c=3 , or  c>3 .

Let's discuss the five cases one by one.

Case I. When  c<-3 

Then,  f(c)=-c+3  and

limxcf(x)=limxc(-x+3)=-c+3 .

Therefore,  limxcf(x)=f(c) .

Hence,  f  satisfies continuity at all points  x , where  x<-3 .

Case II. When  c=-3 

Then,  f(-3)=-(-3)+3=6 .

Also, the left-hand limit

limx3f(x)=limx3(-x+3)=-(-3)+3=6 .

and the right-hand limit

limx3+f(x)=limx3+f(2x)=-2×(-3)=6 .

Therefore,  limx3f(x)=f(-3) .

Hence,  f  satisfies continuity at  x=-3 .

Case III. When   -3<c<3 .

Then,  f(c)=2c  and also

limxcf(x)=limxc(2x)=2c .

Therefore,  limxcf(x)=f(c) .

Hence,  f  satisfies continuity at  x , where  -3<x<3 .

Case IV. When  c=3 

Then, the left-hand limit of the function  f  at  x=3  is

limx3f(x)=limx3f(-2x)=-2 × 3=-6  and

the right-hand limit of the function  f  at  x=3  is

limx3+f(x)=limx3+f(6x+2)=6 × 3+2=20 .

Thus, at  x=3limx3f(x)limx3+f(x) .

Hence,  f  does not satisfy continuity at  x=3 .

Case V. When  c>3 .

Then  f(c)=6c+2  and also

limxcf(x)=limxc(6x+2)=6c+2 .

Therefore,  limxcf(x)=f(c) .

So,  f  satisfies continuity at all points  x , when  x>3 .

Thus,  x=3  is the only point of discontinuity of the function  f .


8.  f(x)={|x|x, if x00,   if x=0 .

Ans: 

The given function is  f(x)={|x|x, if x00, if x=0 .

Now,  f(x)  can be rewritten as

f(x)={|x|x=xx=1 if x<00, if x=0|x|x=xx=1 if x>0

It can be noted that the function  f  is defined at all points of the real line.

Now, let assume  c  as a point on the real line.

Then three cases may arise, either  c<0 , or  c=0 , or  c>0 .

Let's discuss three cases one by one.

Case I. When  c<0 .

Then,  f(c)=-1  and

limxcf(x)=limxc(-1)=-1 .

Therefore,  limxcf(x)=f(c) .

Hence,  f  satisfies continuity at all the points  x  where  x<0 .

Case II. When  c=0 .

Then, the left-hand limit of the function  f  at  x=0  is

limx0f(x)=limx0(-1)=-1  and

the right-hand limit of the function  f  at  x=0  is

limx0+f(x)=limx0+(1)=1 .

At  x=0limx0f(x)limx0+f(x) .

Hence, the function  f  does not satisfy continuity at  x=0 .

Case III. When  c>0 .

Then  f(c)=1  and also

limxcf(x)=limxc(1)=1 .

Therefore,  limxcf(x)=f(c) .

So, the function  f  is continuous at all the points  x , for  x>0 .

Thus,  x=0  is the only point of discontinuity for the function  f .


9.  f(x)={x|x|, if x<0-1, if x0 

Ans: The given function is f(x)={x|x|, if x<0-1, if x0

Now, we know that, if  x<0 , then   |x|=-x .

Therefore, the  f(x)  can be written as

f(x)={x|x|=x-x=-1 if x<01, if x=01, if x>0

f(x)=-1  for all positive real numbers.

Now, let's assume  c  as any real number.

Then three cases may arise, either  c<0 , or  c=0 , or  c>0 .

Let's discuss three cases one by one.

Case I. When  c<0 .

Then,  f(c)=-1  and

 limxcf(x)=limxc(-1)=-1 .

Therefore,  limxcf(x)=f(c) .

Hence,  f  satisfies continuity at all the points  x  where  x<0 .

Case II. When  c=0 .

Then, the left-hand limit of the function  f  at  x=0  is

 limx0f(x)=limx0(-1)=-1  and

the right-hand limit of the function  f  at  x=0  is

 limx0+f(x)=limx0+(-1)=-1 .

At  x=0limx0f(x)=limx0+f(x) .

Hence, the function  f  satisfies continuity at  x=0 .

Case III. When  c>0 .

Then  f(c)=-1  and also

 limxcf(x)=limxc(-1)=-1 .

Therefore,  limxcf(x)=f(c) .

So, the function  f  is continuous at all the points  x , for  x>0 .

Then, we have  limxcf(x)=limxc(1)=1   and  f(c)=-1=limxef(x) .

Therefore, the function  f(x)  is a continuous function.

Thus, there does not exist any point of discontinuity.


10.f(x)={x+1, if x1x2+1, if x<1

Ans: The given function is f(x)={x+1, if x1x2+1, if x<1 .

Note that,  f(x)  is defined at all the points of the real line.

Now, let's assume  c  as a point on the real line.

Then three cases may arise, either either  c<1 , or  c=1 , or  c>1 .

Let's discuss the three cases one by one.

Case I. When  c<1 .

 Then,  f(c)=c2+1  and also

 limxcf(x)=limxcf(x2+1)=c2+1 .

Therefore,  limxcf(x)=f(c) .

Hence,  f  satisfies continuity at all the points  x , where  x<1 .

Case II. When  c=1 .

Then, we have  f(c)=f(1)=1+1=2 .

Now, the left-hand limit of  f  at  x=1  is

 limx1f(x)=limx1(x2+1)=12+1=2  and the right-hand limit of  f  at  x=1  is,  limx1+f(x)=limx1+(x+1)=1+1=2 .

Therefore,  limx1f(x)=f(c) .

Hence,  f  satisfies continuity at  x=1 .

Case III. When  c>1 .

Then, we have   f(c)=c+1  and 

 limxcf(x)=limxc(x+1)=c+1 .

Therefore,

 limxcf(x)=f(c) .

So,  f  satisfies continuity at all the points  x , where  x>1 .

Hence, there does not exist any discontinuity points.


11. f(x)={x33,ifx2x2+1,ifx>2

Ans: The given function is  f(x)={x3-3, if x2x2+1, if x>2 

Observe that, the function  f  is defined at all points in the real line.

Now, let assume  c  as a point on the real line.

Case I. When  c<2 .

Then, we have   f(c)=c3-3  and also  limxcf(x)=limxc(x3-3)=c3-3 .

Therefore, the function  f  attains continuity at all the points  x , where  x<2 .

Case II. When  c=2 .

Then, we have  f(c)=f(2)=23-3=5 .

Now the left-hand limit of the function is

 limx2f(x)=limx2(x33)=23-3=5  and the right-hand limit is

 limx2+f(x)=limx2+(x2+1)=22+1=5 .

Therefore,  limx2f(x)=f(2) .

Hence, the function  f  is continuous at  x=2 .

Case III. When  c>2 .

Then,  f(c)=c2+1  and

 limxcf(x)=limxc(x2+1)=c2+1 .

Therefore,  limxcf(x)=f(c) .

So,  f  attains continuity at all the points  x , where  x>2 .

Thus, the function  f  is continuous at all the points on the real line.

Hence,  f  does not have any point of discontinuity.


12.  f(x)={x10-1, if x1x2,       if x>1

Ans: The given function is  f(x)={x10-1, if x1x2, if x>1

Observe that, the function  f  is defined at every point of the real line.

Now, let assume  c  as a point on the real number line.

Case I. When  c<1 .

Then  f(c)=c10-1 .

Also,   limxcf(x)=limxc(x10-1)=c10-1 

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  attains continuity at every point  x , for  x<1 .

Case II. When  c=1 .

Then the left-hand limit of the function  f(x)  at  x=1  is

 limx1f(x)=limx1(x101)=1101=11=0  and

the right-hand limit of the function  f  at  x=1  is

 limx1+f(x)=limx1+(x2)=12=1 .

So, we can notice that,  limx1-f(x)limx1+f(x) .

Hence, the function  f  does not satisfy continuity at  x=1 .

Case III. When  c>1 .

Then,  f(c)=c2 .

Also,  limxcf(x)=limxc(x2)=c2 .

Therefore,  limxcf(x)=f(c) .

Thus, the function  f  attains continuity at every point  x , for  x>1 .

Hence, we can conclude that  x=1  is the only point of discontinuity for the function  f .


13. Is the function defined by  f(x)={x+5, if x1x-5, if x>1  a continuous function? 

Ans: The given function is  f(x)={x+5, if x1x-5, if x>1  .

It can be noted that the function  f  is defined at every point on the real line. 

Now, let assume  c  as a point on the real line.

Case I. When  c<1 .

Then,  f(c)=c+5 .

Also,  limxcf(x)=limxc(x+5)=c+5 .

Hence,  f  satisfies continuity at every point  x , for  x<1 .

Case II. When  c=1 .

Then,  f(1)=1+5=6 .

Now, the left-hand limit of the function  f  at  x=1  is

 limx1f(x)=limx1(x+5)=1+5=6  and the right-hand limit of the function at  x=1  is  limx1+f(x)=limx1+(x-5)=1-5=4 .

Thus, it is seen that,  limx1f(x)limx1+f(x) .

Hence,  f  does not attain continuity at  x=1 .

Case III. When  c>1 .

Then  f(c)=c-5 .

Also,  limxcf(x)=limxc(x-5)=c-5 .

Therefore,  limxcf(x)=f(c) .

Thus, the function  f  is continuous at every point  x , for  x>1 .

Hence, we can conclude that  x=1  is the only point of discontinuity for the function  f .


14. Discuss the continuity of the function  f , where  f  is defined by 

 f(x)={3, if 0x14, if 1<x<35, if 3x10 .

Ans: The given function is f(x)={3, if 0x14, if 1<x<35, if 3x10 .

Therefore,  f  is defined in the interval   [ 0,10 ]  .

Now let's assume  c  as a point in the interval   [ 0,10 ]  .

Then there may arise five cases.

Case I. When  0c<1 .

Then  f(c)=3 .

Also,  limxcf(x)=limxc(3)=3 .

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  attains continuity at the interval   [ 0,1 ]  .

Case II. When  c=1 .

Then  f(3)=3 .

Also, the left-hand-limit of the function at  x=1  is

 limx1-f(x)=limx1-(3)=3  and the right-hand-limit of the function at  x=1  is

 limx1+f(x)=limx1+(4)=4 .

Thus, it is noticed that  limx1-f(x)limx1+f(x) .

Hence, the function  f  does not satisfy continuity at  x=1 .

Case III. When  1<c<3 .

Then  f(c)=4 .

Also,  limxcf(x)=limxc(4)=4 .

Thus,  limxcf(x)=f(c) .

Hence, the function  f  attains continuity at every point in the interval   [ 1,3 ]  .

Case IV. When  c=3 .

Then  f(c)=5 .

Now, the left-hand-limit of the function  f  at  x=3  is

 limx3-f(x)=limx3-(4)=4  and the right-hand-limit of the function  f  at  x=3  is

 limx3+f(x)=limx3+(5)=5 .

Therefore, it is noted that  limx3-f(x)limx3+f(x)  .

Hence, the function  f  is not continuous at  x=3 .

Case V. When  3<c10 .

Then  f(c)=5 .

Also,   limxcf(x)=limxc(5)=5 .

Therefore,  limxcf(x)=f(c) .

So, the function  f  attains continuity at every point in the interval   [ 3,10 ]  .

Hence, the function  f  is not continuous at  x=1  and  x=3 .


15.  f(x)={2x, if x<00, if 0x14x, if x>1  .

 Ans:  The given function is 

 f(x)={2x, if x<00, if 0x14x, if x>1 

Now, let consider  c  be a point on the real number line. 

Then, five cases may arrive.

Case I. When  c<0 .

Then,  f(c)=2c .

Also,   limxcf(x)=limxc(2x)=2c .

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  attains continuity at every point  x  whenever  x<0 .

Case II. When  c = 0 .

Then,  f(c)=f(0)=0 .

Now, the left-hand-limit of the function  f at  x = 0  is

 limx0f(x)=limx0(2x)=0  and the right-hand limit of the function  f at  x = 0  is, 

 limx0+(x)=limx0+(0)=0 .

Therefore,  limx0f(x)=f(0) .

Thus, the function  f  attains continuity at  x = 0 .

Case III. When  0<c<1  

Then,  f(x)=0 .

Also,  limxcf(x)=limxc(0)=0 .

Therefore,  limxcf(x)=f(c) .

Hence,  f  attains continuity at every point in the interval  (0,1) .

Case IV. When  c =1 .

Then,  f(c)=f(1)=0 .

Now, the left-hand-limit at  x = 1  is

 limx1-f(x)=limx1-(0)=0  and the right-hand-limit at  x = 1  is

 limx1+f(x)=limx1+(4x)=4 × 1=4 .

Thus, it is noticed that,  limx1-f(x)limx1+f(x) .

Hence, the function  f  is not continuous at  x = 1 .

Case V. When  c>1 .

Then,  f(c)=f(1)=0 .

Also,  limxcf(x)=limxc(4x)=4c 

Therefore,  limxcf(x)=f(c) .

So, the function  f  attains continuity at every point  x , for  c>1 .

Hence, the function  f  is discontinuous only at  x = 1 .


16.  f(x)={-2, if x-12x, if -1<x12, if x>1 .

Ans:  The given function is  f(x)={-2, if x-12x, if -1<x12, if x>1

Note that,  f  is defined at every point in the interval  [1,) .

Now, let assume  c  is a point on the real number line.

Case I. When  c<1 .

Then,  f(c)=-2 .

Also,  limxcf(x)=limxc(-2)=-2 .

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  attains continuity at every point  x  , for  x<1 .

Case II. When  c=-1 .

Then,  f(c)=f(-1)=-2 .

Now, the left-hand-limit of the function at  x=-1  is

 limx1-f(x)=limx1-(-2)=-2  and the right-hand-limit at  x=-1  is

 limx1+(x)=limx1+=2 × (-1)=-2 .

Therefore,  limx1f(x)=f(-1) .

Hence, the function  f  satisfies continuity at  x=-1 .

Case III. When  -1<c<1 .

Then,  f(c)=2c  and  limxcf(x)=limxc(2x)=2c 

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  attains continuity at every point in the interval  (-1,1) .

Case IV. When  c=1 .

Then,  f(c)=f(1)=2 × 1=2 

Now, the left-hand-limit of the function at  x = 1  is 

 limx1-f(x)=limx1-(2x)=2 × 1=2  and the right-hand-limit at  x = 1  is

 limx1+f(x)=limx1+2=2 .

Therefore,  limx1f(x)=f(c) .

Thus, the function  f  attains continuity at  x=2 .

Case V. When  c>1 .

Then  f(c)=2 .

Also,  limx2f(x)=limx2(2)=2 .

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  is continuous at every point  x , for  x>1 .

Thus, it can be concluded that the function  f  is continuous for all the points.


17. Find the relationship between  a and b so that the function f defined by f(x)={ax+1, if x3bx+3, if x>3 is continuous at x=3 .

Ans:  The given function isf(x)={ax+1, if x3bx+3, if x>3 .

The function  f  will be continuous at  x = 3  if

 limx3-f(x)=limx3-f(x)=f(3) , ..….. (1)

 limx3-f(x)=limx3-f(ax+1)=3a+1 ,

 limx3+f(x)=limx3+f(bx+1)=3b+3 ,                    …… (2)

 and

 f(3)=3a+1 .                                                     …… (3)

Therefore, from the equation (1), (2), and (3) gives

 3a+1=3b+3 

 3a=3b+2 

 a=b+23 

Hence, the required relationship between  a  and  b  is given by  a=b+23 .


18. For what value of  λ  is the function defined by  f(x)={λ(x22x),ifx04x+1,ifx>0 is continuous at x=0 . What about continuity at x=1 ?

Ans: The given function is  f(x)={ λ (x2-2x), if x0 4x+1, if x>0

Now the function will be continuous at  x = 0  if

 limx0-f(x)=limx0+f(x)=f(0) .

Also, the R.H.L and L.H.L are given by,

 limx0+f(x)=limx0+(4x+1)=4(0)+1=1 ,

 limx0-f(x)=limx0- λ (x2-2x)= λ (02-2 × 0)=0 .

So,  limx0+f(x)limx0f(x) .

Thus, there does not exist any value of   λ   for which  f  is continuous at  x = 0 .

Now, at  x = 1 ,

 f(1)=4x+1=4 × 1+1=5  and

 limx1(4x+1)=4 × 1+1=5 .

Therefore,  limx1f(x)=f(1) .

Hence, the function  f  is continuous at  x = 1 , for all values of   λ  .


19. Show that the function defined by  g(x)=x- [ x ]   is discontinuous at all integral points. Here  [x]  denotes the greatest integer less than or equal to  x

Ans:  The given function is  g(x)=x-[x] .

Note that the function is defined at every integral point.

Now, let assume that  n  is an integer.

Then,  g(n)=n-[n]=n-n=0 .

Now taking left-hand-limit as  xn  to the function  g  gives 

 limxn-g(x)=limxn-[x-[x]]=limxn-(x)-limxn-[x]=n-(n-1)=1 .

Again, the right-hand-limit on the function at  x=n  is

 limxn+g(x)=limxn+[x-[x]]=limxn+(x)-limxn+[x]=n-n=0 .

Note that,  limxn-g(x)limxn+g(x) .

Thus, the function  f  is cannot be continuous at  x=n,  

Hence, the function  g  is not continuous at any integral point. 


20. Is the function defined by  f(x)=x2-sinx+5  continuous at  x= π   ?

Ans:  The given function is  f(x)=x2-sinx+5 .

Now, at  x= π 

 f(x)=f( π )= π 2-sin π +5= π 2-0+5= π 2+5 

Taking limit as  x π   on the function  f(x)  gives

 limx π f(x)=limx π (x2-sinx+5) .

Now substitute  x= π +h  into the function  f(x) .

When  x π  , then  h0 .

Therefore, 

 limx π f(x)=limx π (x2-sinx)+5 .

 =limh0[( π +h2)-sin( π +h)+5] 

 =limh0( π +h)2limh0sin( π +h)+limh05 

 =( π +0)2limh0 [ sin π cosh+cos π sinh ] +5 

 = π 2limh0(sin π cosh)-limh0(cos π sinh)+5 

 = π 2sin π cos0cos π sin0+5 

 = π 2× 1(1) × 0+5= π 2+5 .

So,  limxxf(x)=f( π ) .

Hence, it is concluded that the function  f  is continuous at  x=n .


21. Discuss the continuity of the following functions:

(a)  f(x)=sinx+cosx   

Ans. Suppose that, ‘ a ’ is any real number. Therefore,

 limxa+f(x)=limh0f(a+h) 

Now,

 limh0f(a+h)=limh0[sin(a+h)+cos(a+h)]=limh0[sinacosh+cosasinh+cosacoshsinasinh]=sinacos0+cosasin0+cosacos0sinasin0

 =sina+cosa  ( since,  cos0=1  and  sin0=0 )

 =f(a) .

In a similar way, it can be shown that,

 limxa=f(a) 

Thus,  limxa+f(x)=f(a)=limxaf(x) .

Hence,  f(x)  is continuous at  x=aaR , that is,

the function  f(x)=sinx+cosx is continuous.


(b)  f(x)=sinxcosx   

Ans. Suppose that, ‘ a ’ is any real number. Therefore,

 limxa+f(x)=limh0f(a+h) 

Now,

  limh0f(a+h)=limh0[sin(a+h)cos(ah)]=limh0[sinacosh+cosasinhcosacoshsinasinh]=sinacos0+cosasin0cosacos0sinasin0

 =sinacosa  [ since,  cos0=1  and  sin0=0 ]

 =f(a) .

In a similar way, it can be shown that,

 limxa=f(a) 

Thus,  limxa+f(x)=f(a)=limxaf(x) .

Hence,  f(x)  is continuous at  x=aaR , that is,

the function  f(x)=sinxcosx is continuous.


(c)  f(x)=sinxcosx .

Ans. Suppose that, ‘ a ’ is any real number. Therefore,

 limxa+f(x)=limh0f(a+h) .

Now,

 limh0f(a+h)=limh0[sin(a+h)cos(a+h)]=limh0(sinacosh+cosasinh)(cosacoshsinasinh)=(sinacos0+cosasin0)(cosacosasinasin0)=(sina+0)(cosa0)=sinacosa

 =f(a) .

In a similar way, it can be shown that,

 limxaf(x)=f(a) 

Thus,  limxa+f(x)=f(a)=limxaf(x) .

Hence,  f(x)  is continuous at  x=aaR , that is, the function  f(x)=sinxcosx  is continuous.


22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Ans:  

Sine function:

It can be observed that the function  g(x)=sinx  is defined for all real numbers.

Now, let's consider  c  to be a real number and substitute  x=c+h  into the function  g .

When,  xc , then  h0 .

So,  g(c)=sinc  and

 limxcg(x)=limxcsinx=limh0sin(c+h)=limh0[sinccosh+coscsinh]=limh0(sinccosh)+limh0(coscsinh)=sinccos0+coscsin0=sinc+0=sinc 

Therefore,  limxcg(x)=g(c) .

Thus, the function  g(x)=sinx  is continuous.


Cosine function:

let  h(x)=cosx .

It can be noted that  h(x)=cosx  is defined for all real numbers.

Now, let's consider  c  to be a real number and substitute  x=c+h  into the function  h .

Then,  h(c)=cosc  and

 limxch(x)=limxccosx=limh0cos(c+h)=limh0[cosccosh-sincsinh]=limh0(cosccosh)-limh0(sincsinh)=cosccos0sincsin0=cosc × 1sinc × 0=cosc 

Therefore,  limh0h(x)=h(c) .

Thus, the function  h(x)=cosx  is continuous.


Cosecant function:

We know that if a function  g(x)  is continuous, then

 1g(x),g(x)0  is continuous. 

Now, let  g(x)=sinx

Then,  cosec x=1sinx,  and  sinx0 .

Therefore,  cosecx=1sinx , when  xnπnN .

Since, the function  sinx  is continuous, so  f(x)=cosec x  is continuous for all  x , except at  x=nπ, nN .


Secant function:

We know that if a function  h(x)  is continuous, then

 1h(x),h(x)0  is continuous.

Now, let  h(x)=cosx .

Again,  secx=1cosx,  and  cosx0 .

Therefore,  secx=1cosx  and  x(2n+1)π2 

Since, the function  cosx  is continuous, so the function  f(x)=secx  is continuous for all  x , except at  x=(2n+1) π 2,  nN .


Cotangent function:

We know that if two functions say  g  and  h  are continuous, then

 h(x)g(x),g(x)0  is continuous.

Now, let  h(x)=cosx  and  g(x)=sinx .

Then,  cotx=cosxsinx  and  sinx0 .

That is,  cotx=cosxsinx  and  xnπ, nN .

Since,  cosx  and  sinx  are both continuous, so the function  f(x)=cotx  is continuous except at  x=nπ, nN .


23.Find all points of discontinuity of  f , where  f(x)={sinxx, if x<0x+1, if x0 .

Ans: The given function is f(x)={sinxx, if x<0x+1, if x0 .

Note that, the function  f  is defined at every point on the real number line.

Now, let's consider  c  be a real number.

Then there may arise three cases, either  c<0 , or  c>0 , or  c=0 .

Let us discuss one after another.

Case I. When  c<0 .

Then,  f(c)=sincc .

Also,  limxcf(x)(sinxx)=sincc .

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  is continuous at every point  x , for  x0 .

Case II. When  c>0 .

Then  f(c)=c+1 .

Also,  limxcf(x)=limxc(x+1)=c+1 .

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  is continuous at every point, where  x0 .

Case III. When  c = 0 .

Then  f(c)=f(0)=0+1=1 .

Now, the left-hand-limit of the function  f  at  x=0  is

 limx0-f(x)=limx0-sinxx=1  and the right-hand-limit is

 limx0-f(x)=limx0-(x+1)=1 

Therefore,  limx0-f(x)=limx0-f(x)=f(0) .

So, the function  f  is continuous at  x = 0 .

Thus, the function  f  is continuous at every real point.

Hence, the function  f  does not have any point of discontinuity.


24. Determine if  f(x)={x2sin1x,  if x00, if x=0  

 is a continuous function?

Ans: 

The given function is f(x)={x2sin1x, if x00, if x=0

We can observe that the function  f  is defined at every point on the real number line.

Now, let's consider  c  to be a real number.

Then, there may arise two cases, either  c0  or  c=0 .

Let us discuss the cases one after another.

Case I. When  c0 .

Then  f(c)=c2sin1c .

Also,

 limxcf(x)=limxc(x2sin1x)=(limxcx2)(limxcsin1x)=c2sin1c .

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  is continuous at every point  x0 .

Case II. When  c = 0 .

Then  f(0)=0  and also

 limx0-f(x)=limx0-(x2sin1x)=limx0(x2sin1x) 

Now, we know that,

  -1sin1x1, x0 .

 -x2sin1xx2limx0(-x2)limx0(x2sin1x)00limx0(x2sin1x)0limx0(x2sin1x)=0 

Therefore,  limx0-f(x)=0 .

Similarly, we have, 

 limx0+f(x)=limx0+(x2sin1x)=limx0(x2sin1x)=0 

Therefore,  limx0-f(x)=f(0)=limx0+f(x) .

Thus, the function  f  is continuous at the point  x = 0 .

So, the function  f  is continuous at all real points.

Hence, the function  f  is continuous.


 25. Examine the continuity of  f , where  f  is defined by  f(x)={sinx-cosx, if x0 1  if x=0 .

Ans: The given function is` f(x)={sinx-cosx, if x0 1 if x=0 .

It can be observed that the function  f  is defined at every point on the real number line.

Now, let's consider  c  to be a real number.

Then, there may arise two cases, either  c0  or  c=0 .

Let us discuss the cases one after another.

Case I. When  c0 .

Then,  f(c)=sinc-cosc .

Also,  limxcf(x)=limxc(sinx-cosx)=sinc-cosc .

Therefore,  limxcf(x)=f(c) .

Hence, the function  f  is continuous at every point  x  for  x0 .

Case II. When  c =0 .

Then,  f(0)=-1 .

Now the left-hand-limit of the function  f  at  x=0  is

 limx0-f(x)=limx0-(sinx-cosx)=sin0-cos0=0-1=-1  and the right-hand-limit is 

 limx0+f(x)=limx0+(sinx-cosx)=sin0-cos0=0-1=-1 .

Therefore,  limx0-f(x)=limx0+f(x)=f(0) .

So, the function  f  is continuous at  x = 0 .

Thus, the function  f  is continuous at all real points.

Hence, the function  f  is continuous.


Find the values of  k  so that the function  f  is continuous at the indicated point in Exercises 26 to 29.

26.  f(x)={kcosx π -2x, if x π 2 3,      if x= π 2 

at  x=π2 .

Ans: The given function is  f(x)={kcosx π -2x, if x π 2 3, if x= π 2 .

Observe that,  f  is defined and continuous at  x= π 2  , since the value of the  f  at  x= π 2  is equal with the limiting value of  f  at  x= π 2 .

Since,  f  is defined at  x= π 2  and  f( π 2)=3 , so

 limx π 2f(x)=limx π 2kcosx π -2x .

Substitute  x= π 2+h  into the function  f(x) .

So, we have,  x π 2h0 .

Then,

 limx π 2f(x)=limx π 2kcosx π -2x=limh0kcos( π 2+h) π -2( π 2+h) .

  klimh0-sinh-2h=k2limh0sinhh=k2.1=k2 

Therefore,  limx π 2f(x)=f( π 2) 

  k2=3k=6

Hence, the value of  k  is  6  for which the function  f  is continuous.


27.  f(x)={kx2, if x23,    if x>2  at  x=2 .

Ans: The given function is  f(x)={kx2, if x23, if x>2

It is known that,  f  is continuous at  x = 2  only if  f  is defined at  x=2  and if the value of  f  at  x = 2  is equal with the limiting value of  f  at  x = 2 .

So, at  x=2 ,

Now, the left-hand-limit and right-hand-limit of the function  f(x)  at  x=2 respectively are,

 limx2f(x)=limx2(kx2)=k(2)2=4k

and  limx2+f(x)=limx2+(3)=3 .

Since, the function is continuous at  x=2 , so

 limx2-f(x)=limx2+f(x)=f(2)4k=3k=34

Hence, the value of  k  is  34  for which the function  f  is continuous.


28.  f(x)={kx+1, if xπcosx,  if x>π  at  x=π .

Ans: The given function is f(x)={kx+1, if x π cosx, if x> π  .

It is known that,  f  is continuous at  x= π   only if the value of  f  at  x= π   is equal with the limiting value of  f  at  x= π  .

It is provided that the function  f  is defined at  x= π  .

Also,  f( π )=k π +1 .

Now, the left-hand-limit,

 limx π f(x)=limx π (kx+1)=k π +1 .

Also, the right-hand-limit,

 limx π +f(x)=limx π +cosx=cos π =-1 .

Since, the function  f  is continuous, so

 limx π f(x)=limx π +f(x)=f( π ) 

 π +1=-1π =-2k=-2 π  

Hence, the value of  k  is  -2 π   for which the function  f  is continuous at  x= π 


29.  f(x)={kx+1, if x53x-5, if x>5  at  x=5 

Ans: The given function is   f(x)={kx+1, if x53x-5, if x>5 .

Recall that, the function  f  is continuous at  x = 5  only if the value of  f  at  x = 5  is equal to the limiting value of  f  at  x = 5 .

Note that, the function  f  is defined at  x = 5 .

Also,  f(5)=kx+1=5k+1 .

Then, the left-hand-limit of the function,

 limx5f(x)=limx5(kx+1)=5k+1 .

The right-hand-limit of the function,

 limx5+f(x)=limx5+(3x-5)=3(5)5=155=10 .

Since, the function  f  is continuous, so

 limx5-f(x)=limx5+(3x-5)=5k+15k+1=105k=9k=95 

Hence, the value of  k  is  95  for which the function  f  is continuous at  x=5 .


30. Find the values of  a  and  b  such that the function defined by 

f  such that  f(x)={5,     if    x2ax+b, if 2<x<10 21,  if    x10  is a continuous function.

Ans: The given function is f(x)={5, if x2ax+b, if 2<x<10 21, if x10 .

Note that,  f  is defined at every point on the real number line.

Now, realise that if the function  f  is continuous then  f  is continuous at every real number.

So, let  f  satisfies continuity at  x=2  and  x=10 .

Then, since  f  is continuous at  x=2 , so

 limx2-f(x)=limx2+f(x)=f(2)limx2-(5)=limx2+(ax+b)=55=2a+b 

 2a+b=5           …… (1)

Again, since  f  attains continuity at  x=10 , so

 limx10-f(x)=limx10+f(x)=f(10)limx10-(ax+b)=limx10+(21)=21

 10a+b=21 …… (2)

Subtracting the equation (1) from the equation (2), gives

 8a=16a=2 

Substituting  a=2  in the equation (1), gives

 × 2+b=54+b=5b=1 

Hence, the values of  a  and  b  are  2  and  1  respectively for which  f  is a continuous function.


31. Show that the function defined by  f(x)=cos(x2)  is a continuous function.

Ans: The given function is  f(x)=cos(x2) .

Note that,  f  is defined for all real numbers and so  f  can be expressed as the composition of two functions as,  f=gh , where  g(x)=cosx  and  h(x)=x2 .

  [ (goh)(x)=g(h(x))=g(x2)=cos(x2)=f(x) ]  

Now, it is to be Proven that, the functions  g(x)=cosx  and  h(x)=x2  are continuous.

Since the function  g  is defined for all the real numbers, let 's consider  c  be a real number.

Then,  g(c)=cosc .

Substitute  x=c+h  into the function  g .

When,  xc , then  h0 .

Then we have,

 limxcg(x)=limxccosx=limh0cos(c+h)=limh0[cosccosh-sincsinh]=limh0(cosccosh)limh0(sincsinh)=cosccos0sincsin0=cosc × 1sinc × 0=cosc

Therefore,  limxcg(x)=g(c) .

Hence, the function  g(x)=cosx  is continuous.

Again,  h(x)=x2  is defined for every real point.

So, let consider  k  be a real number, then  h(k)=k2  and

 limxkh(x)=limxkx2=k2 .

Therefore,  limxkh(x)=h(k) .

Hence, the function  h  is continuous.

Now, remember that for real valued functions  g  and  h  , such that  (g  h)  is defined at  c  , if  g  is continuous at  c  and  f  is continuous at  g(c) , then  (f  h) is continuous at  c .

Hence, the function  f(x)=(g  h)(x)=cos(x2)  is continuous.


32. Show that the function defined by  f(x)=|cosx|  is a continuous function.

Ans: The given function is  f(x)=|cosx| .

Note that, the function  f  is defined for all real numbers. So, the function  f  can be expressed as the composition of two functions as,  f=gh , where  g(x)=|x|  and  h(x)=cosx .

 [(goh)(x)=g(h(x))=g(cosx)=|cosx|=f(x) ]  

Now, it is to be proved that the functions  g(x)=|x|  and  h(x)=cosx  are continuous.

Remember that,  g(x)=|x| , can be written as

 g(x)={-x, if x<0 x, if x0 .

Now, since the function  g  is defined for every real number, let consider  c  be a real number.

Then there may arise three cases, either  c<0 , or  c>0 , or  c=0 .

Let's discuss the cases one after another.

Case I. When  c<0 .

Then,  g(c)=-c .

Also,  limxcg(x)=limxc(-x)=-c .

Therefore,  limxcg(x)=g(c) .

Hence, the function  g  is continuous at every point  x , for  x<0 .

Case II. When  c>0 .

Then,  g(c)=c .

Also,  limxcg(x)=limxcx=c .

Therefore,  limxcg(x)=g(c) .

Hence, the function  g  is continuous at every point  x  for  x>0 .

Case III. When  c=0 .

Then,  g(c)=g(0)=0 .

Now, the left-hand-limit of the function  g  at  x=0  is

 limx0g(x)=limx0-(-x)=0  and the right-hand-limit is

 limx0+g(x)=limx0+(x)=0 .

Therefore,  limx0g(x)=limx0+g(x)=g(0) .

Hence, the function  g  is continuous at  x=0 .

By observing the above three discussions, we can conclude that the function  g  is continuous at every real point.

Now, since the function  h(x)=cosx  is defined for all real numbers, let 's consider  c  be a real number. Then, substitute  x=c+h  into the function  h .

So, when  xc , then  h0 .

Then, we have

 h(c)=cosc  and

limxch(x)=limxccosx 

 =limh0cos(c+h) 

 =limh0[cosccosh-sincsinh] 

 =limh0(cosccosh)limh0(sincsinh) 

 =cosccos0sincsin0=cosc × 1-sinc × 0=cosc

Therefore,  limxch(x)=h(c) .

Hence, the function  h(x)=cosx  is continuous.

Now remember that, for real valued functions  g  and  h , such that  (gh)  is defined at  x=c  only if  g  is continuous at  c  and  f  is continuous at  g(c) , then the composition functions  (f  g)  is continuous at  x=c .

Thus, the function  f(x)=(goh)(x)=g(h(x))=g(cosx)=|cosx|  is continuous.


33. Examine that  sin|x|  is a continuous function. 

Ans: First suppose that,  f(x)=sin|x| .

Now, note that the function  f  is defined for all real numbers and so  f  can be expressed as the composition of  functions as,  f=gh,  where  g(x)=sinx  and  h(x)=|x| .

[(gh)(x)=g(h(x))=g(|x|)=sin|x|=f(x)] 

So, it is to be proved that the functions  g(x)=sinx  and  h(x)=|x|  are continuous.

Now, remember that, the function  h(x)=|x|  can be written as 

 h(x)={-x, if x<0x,  if x0 

Note that, the function  h  is defined for every real number, and so let consider  c  be a real number. 

Then, there may arise three cases, either  c<0 , or  c>0 , or  c=0 .

Let us discuss the cases one after another.

Case I. When  c<0 .

Then  h(c)=-c .

Also,  limxc(-x)=limxcx=-c .

Therefore,  limxch(x)=h(c) .

Hence, the function  h  is continuous at every point  x   for  x<0 .

Case II. When  c>0 .

Then,  h(c)=c 

Also,  limxc(-x)=limxcx=c .

Therefore,  limxch(x)=h(c) .

Thus, the function  h  is continuous at every point  x   for  x>0 .

Case III. When  c = 0 .

 Then,  h(c)=h(0)=0 .

Also, the left-hand-limit of the function  h  at  x=0  is

 limx0-h(x)=limx0-(-x)=0  and the right-hand -limit is 

 limx0+h(x)=limx0+(x)=0 .

Therefore,  limx0-h(x)=limx0+(x)=h(0) .

Thus, the function  h  is continuous at  x = 0 .

By observing the above three discussions, we can conclude that the function  h  is continuous at every point. 

Again, since the function  g(x)=sinx  is defined for all real numbers, so let consider  c  be a real number and substitute  x=c+k  into the function.

Now, when  xc  then   0 .

Then, we have

 g(c)=sinc .

Also,

 limxcg(x)=limxcsinx=limk0sin(c+k)=limk0[sinccosk+coscsink]=limk0(sinccosk)+limh0(coscsink)=sinccos0+coscsin0=sinc+0=sinc 

Therefore,  limxcg(x)=g(c) .

Hence, the function  g  is continuous.

Now, remember that, for any two real valued functions  g  and  h , such that the composition of functions  gh  is defined at  c , if  g  is continuous at  c  and  f  is continuous at  g(c) , then the composition function  gh  is continuous at  c .

Thus, the function  (gh)(x)=g(h(x))=g(|x|)=sin|x|=f(x)  is continuous.


34.Find all the points of discontinuity of  f  defined by  f(x)=|x||x+1|

Ans: The given function is  f(x)=|x|-|x+1| .

Let consider two functions

 g(x)=|x|  and  h(x)=|x+1| .

Then we get,   f=g-h .

Now, the function  g(x)=|x|  can be written as

 g(x)={-x, if x<0x, if x0 .

Note that, the function  g  is defined for every real number and so let consider  c  be a real number.

Then there may arise three cases, either  c<0 , or  c>0 , or  c=0 .

Let us discuss the cases one after another.

Case I. When  c<0 .

Then,  g(c)=g(0)=-c .

Also,  limxcg(x)=limxc(-x)=-c .

Therefore,  limxcg(x)=g(c) .

Hence, the function  g  is continuous at every point  x  for  x<0 .

Case II. When  c>0 .

Then  g(c)=c .

Also,  limxcg(x)=limxcx=c .

Therefore,  limxcg(x)=g(c) .

Hence, the function  g  is continuous at every point  x , where  x>0 .

Case III. When  c = 0 .

Then  g(c)=g(0)=0 .

Also, the left-hand-limit of the function  g  at  x=0  is

 limx0-g(x)=limx0-(-x)=0  and the right-hand-limit is

limx0+g(x)=limx0+(x)=0 .

Therefore,  limx0-g(x)=limx0+(x)=g(0) .

Hence, the function  g  is continuous at  x = 0 .

Thus, we can conclude by observing the above three discussions that  g  is continuous at every real point.

Now, remember that, the function  h(x)=|x+1|  can be written as

 h(x)={-x(x+1), if, x<-1x+1, if, x-1 .

Note that, the function  h  is defined for all real numbers, and so let consider  c  be a real number.

Case I. When  c<-1 .

Then  h(c)=-(c+1) .

Also,  limxc[-(x+1)]=-(c+1) .

Therefore,  limxch(x)=h(c) .

Hence, the function  h  attains continuity at every real point  x , where  x<-1 .

Case II. When  c>-1 .

Then,  h(c)=c+1 .

Also,  limxch(x)=limxc(x+1)=(c+1) .

Therefore,  limxch(x)=h(c) .

Hence, the function  h  satisfies continuity at every real point  x  for  x>-1 .

Case III. When  c =-1 .

Then,  h(c)=h(-1)=-1+1=0 .

Also, the left-hand-limit of the function  h  at  x=1  is

 limx1-h(x)=limx1-[-(x+1)]=-(-1+1)=0  and the right-hand-limit is

 limx1+h(x)=limx1+(x+1)=(-1+1)=0 .

Therefore,  limx1-h=limx1+h(x)=h(-1) .

Thus, the function  h  satisfies continuity at  x=-1 .

Hence, by observing the above three discussions, we can conclude that the function  h  is continuous for every real point.

Now, since the functions  g  and  h  are both continuous, so the function  f=g-h  is also continuous.

Hence, the function  f  does not have any discontinuity points.


Exercise 5.2

Differentiate the function with respect to  x  in Exercises 1 to 8.

1.  f(x)=sin(x2+5)  

Ans: Let  f(x)=sin(x2+5), u(x)=x2+5,  and  v(t)=sint 

Then,  (vu)(x)=v(u(x))=v(x2+5)=sin(x2+5)=f(x) 

Therefore,  f  is a composition of two functions  u  and  v .

Substitute  t=u(x)=x2+5 .

Then, it gives 

 dvdt=ddt(sint)=cost=cos(x2+5)dtdx=ddx(x2+5)=ddx(x2)+ddx(5)=2x+0=2x 

Applying the chain rule of derivatives gives 

dfdx=dvdt.dtdx=cos(x2+5) × 2x=2xcos(x2+5) 

An alternate method.

 dfdx=dvdt.dtdx=cos(x2+5).ddx(x2+5)=cos(x2+5).[ddx(x2)+ddx(5)]=cos(x2+5)[ 2x+0 ] =2xcos(x2+5) 

Hence, the derivative of the function  f(x)=sin(x2+5)  is  2xcos(x2+5) .


2.  f(x)=cos(sinx)  

Ans: Let suppose that,  f(x)=cos(sinx), u(x)=sinx,  and  v(t)=cost 

Then,  (vu)(x)=v(u(x))=v(sinx)=cos(sinx)=f(x) 

Therefore, it is observed that  f  is the composition of two functions  u  and  v .

Now, substitute  t=u(x)=sinx .

Then,

 dvdt=ddt(cost)=-sint=-sin(sinx)  and

 dtdx=ddx(sinx)=cosx .

Applying the chain rule of derivatives gives

 dfdx=dvdt.dtdx= -sin(sinx).cosx=-cosxsin(sinx) 

An alternate method. 

 ddx[cos(sinx)]=-sin(sinx).ddx(sinx)=-sin(sinx)cosx=-cosxsin(sinx) .

Hence, the derivative of the function  f(x)=cos(sinx)  is  -cosxsin(sinx) .


3.  f(x)=sin(ax+b)  .

Ans: Let suppose that,  f(x)=sin(ax+b), u(x)=ax+b, , and  v(t)=sint  

Then we get,  (vu)(x)=v(u(x))=v(ax+b)=sin(ax+b)=f(x) .

It is observed that the function  f  is the composition of two functions  u  and  v  . 

Now, substitute  t=u(x)=ax+b .

Therefore,

 dvdt=ddt(sint)=cost=cos(ax+b)  and

 dtdx=ddx(ax+b)=dtdx(ax)+ddx(b)=a+0=a .

Applying the chain rule derivatives, gives 

 dfdx=dvdt.dtdx=cos(ax+b).a=acos(ax+b) .

Alternate method.

 ddx[sin(ax+b)]=cos(ax+b).ddx(ax+b)=cos(ax+b) × [ddx(ax)+ddt(b)]=cos(ax+b) × (a+0)=acos(ax+b) 

Hence, the derivative of the function  f(x)=sin(ax+b)  is  acos(ax+b) .


4.  f(x)=sec(tan(x))  with respect to  x .

Ans: Let suppose that,  f(x)=sec(tan(x)), u(x)=x,v(t)=tant,  and  w(s)=secs 

Then, we get,  (wvu)(x)=w [ v(u(x)) ] =w [ v(x] =w(tanx)=f(x) .

It is observed that the function  g  is the composition of three functions  u  ,  v  and  w

Now, substitute  s=v(t)  and  t=u(x)=x .

Then, we get

 dwds=dds(secs)=secs=sec(tant) × tan(tant)  [ s=tant ] =sec(tanx× tan(tanx)  [ t=x ]   

Thus, applying the chain rule of derivatives gives

 dtdx=dwds.dsdt × dtdx=sec(tan(x× (tan(x)xsec2x × 12x=12xsec2xsec(tanx)tan(tanx)=sec2xsec(tanx)tan(tanx)2x 

An alternate method.

 ddx[sec(tan(x))]=sec(tan(x).(tan(x).ddx(tan(x)=sec(tanx× tan(tanx× sec2(x× ddx(x)=sec(tanx× tan(tanx× sec2(x× 12x=sec2xsec(tanx)tan(tanx)2x 

Hence, the derivative of the function  f(x)=sec(tan(x))  is  sec2xsec(tanx)tan(tanx)2x .

5.  f(x)=sin(ax+b)cos(cx+d) .

Ans: The given function is  f(x)=sin(ax+b)cos(cx+d) .

Now, let  g(x)=sin(ax+b)  and  h(x)=cos(cx+d) .

Here we will use the divide formula of derivatives  {f}'= h-gh  h2 .    …… (1)

First, consider the function  g(x)=sin(ax+b) .

Let's assume   u(x)=ax+b,  and  v(t)=sint .

Then, we get  (vu)(x)=v(u(x))=v(ax+b)=sin(ax+b)=g(x) .

Therefore, we observe that the function  g  is the composition of two functions,  u  and  v  .

So, substitute  t=u(x)=ax+b .

Then,

 dvdt=ddt(sint)=cost=cos(ax+b)  and

 dtdx=ddx(ax+b)=dtdx(ax)+ddx(b)=a+0=a .

Therefore, applying the chain rule of derivatives gives

 {g}'=dgdx=dvdt.dtdx=cos(ax+b).a=acos(ax+b) .

Now, consider the function  h(x)=cos(cx+d) .

Let's suppose  p(x)=cx+d,  and  q(t)=cosy .

Then, we have  (qp)(x)=q(p(x))=q(cx+d)=cos(cx+d)=h(x) .

Therefore, the function  h  is the composition of two functions  p  and  q

Now, substitute  y=p(x)=cx+d .

Then we have,

 dqdy=ddy(cosy)=-siny=-sin(cx+d)  and

 dydx=ddx(cx+d)=ddx(cx)+ddx(d)=c .

Therefore, applying the chain rule of derivatives gives

 {h}'=dhdx=dqdy.dydx=-sin(cx+d) × c=-csin(cx+d) .

Now, substituting all the obtained derivatives into the formula (1) gives

 {f}'=acos(ax+b) × cos(cx+d)+sin(ax+b)×csin(cx+d) [ cos(cx+d ] 2=acos(ax+b)cos(cx+d)+csin(ax+b) × sin(cx+d)cos(cx+d) × 1cos(cx+d)=acos(ax+b)sec(cx+d)+csin(ax+b)tan(cx+d)sec(cx+d)

Hence, the derivative of the function  f(x)=sin(ax+b)cos(cx+d)  is  acos(ax+b)sec(cx+d)+c.sin(ax+b)tan(cx+d)sec(cx+d) .


6.  f(x)=cos(x3)×sin2(x5)

Ans: The given function is  f(x)=cos(x3) × sin2(x5) .

Then,

 ddx [ cosx3 × sin2(x5] =sin2(x5× ddx(cosx3)+cosx3×ddx [ sin2(x5] =sin2(x5× (-sinx3× ddx(x3)+cosx3+2sin(x5× ddx [ sinx5 ] =-sinx3sin2(x5× 3x2+2sinx5cosx3 × cosx5 × ddx(x5)=-3x2sinx3 × sin2(x5)+2sinx5cosx5cosx3 × 5x4=10x4sinx5cosx5cosx3-3x2sinx3sin2(x5) 

Hence, the derivative of the function  f(x)=cos(x3) × sin2(x5)  is 10x4sinx5cosx5cosx3-3x2sinx3sin2(x5) .


7.  f(x)=2cot(x2) .

Ans:  The given function is  f(x)=2cot(x2) .

Then,

 ddx[2cot(x2)]=212cot(x2) × ddx[cot(x2)]=1cot(x2)cosec2(x2× ddx(x2)=1cot(x2)cosec2(x2)×2x=-2xcosec2(x2)tan(x2) 

Hence, the derivative of the function  f(x)=2cot(x2)  is  -2xcosec2(x2)tan(x2) .


8.  f(x)=cos(x) .

Ans:  The given function is  f(x)=cos(x) 

Now, let  u(x)=x  and  v(t)=cost .

Then, we have,  (vu)(x)=v(u(x))=v(x)=cosx=f(x) .

It is observed that the function  f  is the composition of two functions  u  and  v . So, let  t=u(x)=x .

Then, 

dtdx=ddx(x)=ddx(x12)=12x12=12x  .

Also,  dvdt=ddt(cost)=-sint=sin(x) .

Now, by applying the chain rule of derivatives, gives 

 dtdx=dvdt × dtdx=-sin(x× 12x=-12xsin(x)=-sin(x)2x 

An alternate method.

 ddx[cos(x)]=-sin(x).ddx(x)=-sin(x× ddx(x12)=-sinx × 12x12=-sinx2x 

Hence, the derivative of the function  f(x)=cos(x)  is  -sin(x)2x .


9. Prove that the function  f  given by  f(x)=|x-1|, xR  is not differentiable at  x=1 .

Ans:  The given function is  f(x)=|x-1|,xR .

We know that a function  f  is called differentiable at a point  x=c  in its domain if both the  limk0-f(c+h)-f(c)h  and  limh0+f(c+h)-f(c)h  are finite and equal.

Now verify the differentiability for the function  f  at the point  x =1 .

First, the left-hand-derivative is

 limh0-f(1+h)-f(1)h=limh0-f|1+h-1||1-1|h 

 limh0-f|h|-0h=limh0+-hh=1 , since   h0|h|=-h .

Now the right-hand-derivative is

 limh0+f(1+h)-f(1)h=limh0+f|1+h-1||1-1|h 

 limh0+f|h|-0h=limh0+-hh=-1 , since  h0|h|=h .

From the above, it is noted that  limh0f(1+h)-f(1)hlimh0+f(1+h)-f(1)h .

Hence, the function  f(x)=|x-1|,xR  is not differentiable at the point  x=1 .


10. Prove that the greatest integer function defined by  f(x)= [ x ] ,0x3 , is not differentiable at  x=1  and  x=2  .

Ans: The given function is  f(x)= [ x ] ,0x3 .

Remember that a function  f  is called differentiable at a point  x=c  in its domain if both the limits,  limh0-f(c+h)-f(c)h  and  limh0+f(c+h)-f(c)h  are finite and equal.

First, take the left-hand-derivative of the function  f  at  x=1  such that

 limh0-f(1+h)-f(1)h=limh0- [ 1+h ] - [ 1 ] h=limh0-(0-1)h=limh0+-hh= .

Now, take the right-hand-derivative of the function  f  at  x=1  such that

 limh0+f(1+h)-f(1)h=limh0+ [ 1+h ] [ 1 ] h=limh0+1-1h=limh0+0=0 .

Therefore, it is being noticed that,  limh0-f(1+h)-f(1)hlimh0+f(1+h)-f(1)h .

Thus, the function  f  is not differentiable at  x=1 .

Now, justify the differentiability of the function  f  at  x=2 .

First, take the left-hand-derivative of the function  f  at  x=2 , such that

limh0-f(2+h)-f(2)h=limh0- [ 2+h ] - [ 2 ] h=limh0-(1-2)h=limh0+-1h= 

Now, take the right-hand-derivative of the function  f  at  x=2 , such that

 limh0+f(2+h)-f(2)h=limh0+ [ 2+h ] [ 2 ] h=limh0+1-2h=limh0+0=0 

It is observed from the above discussion that,  limh0-f(2+h)-f(2)hlimh0+f(2+h)-f(2)h .

Thus, the function  f  is not differentiable at the point  x=2.

Exercise 5.3

Find  dydx  in the following.

1.  2x+3y=sinx

Ans:  The given equation is  2x+3y=sinx .

Differentiating both sides of the equation with respect to  x  , gives

  ddy(2x+3y)=ddx(sinx) 

 ddx(2x)+ddx(3y)=cosx ,  applying the addition rule of derivatives.

 2+3dydx=cosx 

 3dydx=cosx-2 

Therefore,  dydx=cosx-23 .

2.  2x+3y=siny .

Ans:  The given equation is  2x+3y=siny .

Differentiating both sides of the equation with respect to  x ,  gives  

 ddx(2x)+ddx(3y)=ddx(siny)  

 2+3dydx=cosydydx    , applying the chain rule of derivatives.

 2=(cosy-3)dydx 

Therefore,  dydx=2cosy-3 .


3.  ax+by2=cosy .

Ans:  The given function is  ax+by2=cosy .

Differentiating both sides of the equation with respect to  x , gives  ddx(ax)+ddx(by2)=ddx(cosy)   

 × 1+bddy(y2)dydx=ddy(cosy)dydx  , applying the chain rule of derivatives.

 a+b × 2ydydx=-sinydydx  

 (2by+siny)dydx=-a 

Therefore,  dydx=-a2by+siny .


4.  xy+y2=tanx+y .

Ans: The given equation is  xy+y2=tanx+y .

Differentiating both sides of the equation with respect to  x , gives  ddx(xy+y2)=ddx(tanx+y)ddx(xy)+dydx(y2)=ddx(tanx)+dydx

[× ddx(x)+x × dydx]+2ydydx=sec2x+dydx , applying chain rule of derivatives.

 × 1+xdydx+2ydydx=sec2x+dydx 

Therefore,  dydx=sec2x-y(x+2y-1) .


5. x2+xy+y2=100 .

Ans: The given equation is  x2+xy+y2=100 .

Differentiating both sides of the equation with respect to  x , gives  dydx(x2+xy+y2)=ddx100dydx(x2)+dydx(xy)+dydx(y2)=0  

2x+[× ddx(x)+x × dydx]+2ydydx=0  , applying the chain rule of derivatives.

2x+y × 1+x ×dydx+2ydydx=02x+y+(x+2y)dydx=0 

Therefore,  dydx=-2x+yx+2y .


6. x3+x2y+xy2+y3=81 .

Ans: The given equation is  x3+x2y+xy2+y3=81 .

Differentiating both sides of the equation with respect to  x , gives  dydx(x3+x2y+xy2+y3)=ddx(81)ddx(x3)+dydx(x2y)+dydx(xy2)+dydx(y3)=03x+[yddx(x2)+x2dydx]+[y2ddx(x)+xddx(y2)]+3y2dydx=0 

3x+[× 2x+x2dydx]+[y2 × 1+x × 2y × dydx]+3y2dydx=0  , applying chain rule.

 (x3+2xy+3y2)dydx+(3x+2xy+y2)=0 

Therefore,  dydx=-(2x+2xy+y2)(x3+2xy+3y2) .

 

7.  sin2y+cosxy= k .

Ans:  The given equation is  sin2y+cosxy= k .

Differentiating both sides of the equation with respect to  x , gives  ddx(sin2y+cosxy)=ddx( k)ddx(sin2y)+ddx(cosxy)=0                                             …. (1)

Applying the chain rule of derivatives gives

ddx(sin2y)=2sinyddx(siny)=2sinycosydydx ….. (2)

and

ddx(cosxy)=-sinxyddx(xy)=-sinxy[yddx(x)+xdydx]=-ysinxy-xsinxydydx       …. (3)

From (1), (2) and (3), we obtain

 2sinycosydydx-ysinxy-xsinxydydx=0(2sinycosy-xsinxy)dydx=ysinxy(sin2y-xsinxy)dydx=ysinxy 

Therefore,  dydx=ysinxysin2y-xsinxy .


8. sin2x+cos2y=1 .

Ans:  The given equation is  sin2x+cos2y=1 .

Differentiating both sides of the equation with respect to  x , gives  dydx(sin2x+cos2y)=ddx(1)ddx(sin2x)+ddx(cos2y)=02sinx × ddx(sinx)+2cosy × ddx(cosy)=0 

2sinxcosx+2cosy(-siny) × dydx=0sin2x-sin2ydydx=0 

 dydx=sin2xsin2y 


9.  y=sin1(2x1+x2) .

Ans:  The given equation is  y=sin-1(2x1+x2) .

Now,  y=sin-1(2x1+x2) 

 siny=2x1+x2 .

Differentiating both sides of the equation with respect to  x , gives  ddx(siny)=ddx(2x1+x2)

 cosydydx=ddx(2x1+x2)…… (1)

Now, the function  2x1+x2  is of the form of  uv

Applying the quotient rule, gives

 ddx(2x1+x2)=(1+x2)ddx(2x)-2x × ddx(1+x2)(1+x2)2=(1+x2× 2-2x × [ 0+2x ] (1+x2)2=2+2x2-4x2(1+x2)2

Therefore,  ddx(2x1+x2)=2(1-x2)(1+x2)2                                       ……. (2)

It is given that,siny=2x1+x2 cosy=1-sin2y=1-(2x1+x2)2=(1+x2)2-4x2(1+x2)2 

 cosy=(1-x2)2(1-x2)2=1-x21+x2                               ….. (3)

From the equation (1), (2) and (3), gives

1-x21+x2dydx=2(1-x2)(1+x2)2 

Therefore,  dydx=21+x2 .


10.  y=tan-1(3x-x31-3x2),-13<x<13 .

Ans: The given function is  y=tan-1(3x-x31-3x2) .

Now,  y=tan-1(3x-x31-3x2)

tany=3x-x31-3x2                                         …… (1)

According to the trigonometric formulas,

tany=3tany3-tan3y31-3tan2y3                                             …... (2)

By comparing the equations (1) and (2), gives

 x=tany3 .                                                                                …… (3)

Differentiating both sides of the equation (3) with respect to  x , gives 

ddx(x)=ddx(tany3)1=sec2y3 × ddx(y3)1=sec2y3 × 13 × dydxdydx=3sec2y3=31+tan2y3 

Therefore,  dydx=31+x2 .


11.  y=cos-1(1-x21+x2) ,  0<x<1.

Ans: The given equation is  y=cos-1(1-x21+x2) 

 cosy=1-x21+x2 

1-tan2y21+tan2y2=1-x21+x2 .                                                                        …… (1)

By comparing both sides of the equation (1) give

 tany2=x                                                                                           …… (2)          

Differentiating both sides of the equation (2) with respect to  x , gives  sec2y2 × ddx(y2)=ddx(x)sec2y2 ×12dydx=1 

dydx=2sec2y2dydx=21+tan2y2 

Therefore, using the equation (2), gives

dydx=21+x2


12.  y=sin-1(1-x21+x2) , 0<x<1.

Ans: The given equation is  y=sin-1(1-x21+x2) .

Now,  y=sin-1(1-x21+x2) 

siny=1-x21+x2 .                                                         …… (1)

Differentiating both sides of the equation with respect to  x , gives  ddx(siny)=ddx(1-x21+x2)                     …... (2)

Using chain rule, we get

ddx(siny)=cosy × dydx                                                 …… (3)

cosy=1-sin2y=1-(1-x21+x2)2=(1+x2)2-(1-x2)21+x2=4x2(1+x2)2 , using the equation (1).

 cosy=2x1+x2                                                         …… (4)

Therefore, from the equation (3) and (4) gives

ddx(siny)=2x1+x2dydx ….. (5)

Now,

 ddx(1-x21+x2)=(1+x2)(1-x2)-(1-x2)(1+x2)(1+x2)2  , applying the quotient rule.

 =(1+x2)(-2x)-(1-x2)(2x)(1+x2)2=-2x-2x3-2x+2x3(1-x2)2 

 ddx(1-x21+x2)=-4(1+x2)2             …... (6)

Using the equations (2), (5), and (6), gives

 2x1+x2dydx=-4x(1+x2)2 

Therefore,  dydx=-21+x2 .

An alternate method.

y=sin-1(1-x21+x2)siny=1-x21+x2(1+x2)siny=1-x2(1+siny)x2=1-sinyx2=1-siny1+sinyx2=(cosy2-siny2)2(cosy2+sinyx)2x=cosy2-siny2cosy2+siny2 

x=tan( π 4- π 2) 

Differentiating both sides of the equation with respect to  x , gives ddx(x)=ddx[tan( π 4-y2)]1=sec2( π 4-y2) × dydx( π 4-y2)1=[1+tan2( π 4-y2) × (-12 × dydx)]1=(1+x2)(-12dydx)

Therefore,  dxdy=-21+x2 .


13.  y=cos-1(2x1+x2) , -1<x<1.

Ans: The given equation is  y=cos-1(2x1+x2) .

Now,  y=cos-1(2x1+x2) 

 cosy=2x1+x2 .                                     …… (1)

Differentiating both sides of the equation with respect to  x , gives  ddx(cosy)=ddx × (2x1+x2) 

-siny × dydx=(1-x2× ddx(2x)-2x ×ddx(1+x2)(1+x2)2 , applying the quotient rule.

-1-cos2ydydx=(1+x2× 2-2x × 2x(1+x2)2 

[1-(2x1+x2)2]dxdy=-[2(1-x)2(1+x2)2] , using the equation (1).

(1-x2)2-4x2(1+x2)2=dydx=-2(1-x)2(1+x2)(1-x2)2(1+x2)2dydx=-2(1-x)2(1+x2)1-x21+x2 × dydx=-2(1-x)2(1+x2) 

Therefore,  dydx=-2(1+x2) .


14.  y=sin1(2x1x2), 12<x<12 .

Ans:  The given equation is  y=sin-1(2x1-x2) .

Now,  y=sin-1(2x1-x2) 

 siny=2x1-x2 .                                                                                  …… (1) 

Differentiating both sides of the equation with respect to  x , gives  cosydydx=2[xddx(1-x2)+1-x2dxdx] 

1-sin2ydydx=2[x2 × -21-x2+1-x2] 

 1-(2x1-x2)2dydx=2[-x2+1-x21-x2] , using the equation (1).

1-4x2(1-x2)dydx=2[1-2x21-x2](1-2x)2dydx=2[1-2x21-x2](1-2x2)dydx=2[1-2x21-x2] 

Therefore,  dydx=21-x2 .


15.  y=sec1(12x21), 0<x<12 .

Ans: The given equation is  y=sec-1(12x2-1) .

Now,

 y=sec-1(12x2-1)secy=12x2-1cosy=2x2-12x2=1+cosy2x2=2cos2y2 

 x=cosy2                                                                     ……. (1)  

Differentiating both sides of the equation with respect to  x , gives 

 ddx(x)=ddx(cosy2)1=siny2 × ddx(y2)-1siny2=12dydx 

dydx=2siny2=21cos2y2

 =21x2 , using the equation (1).

Therefore,  dydx=-21x2 .


Exercise 5.4 

Differentiate the following w.r.t.  x .    

1.  y=exsinx

Ans: The given function is   y=exsinx .

Then, we have

dydx=sinxddx(ex)-exddx(sinx)sin2x , by applying the quotient rule of derivatives.

=sinx×(ex)-ex×(cosx)sin2x 

Therefore, the derivative of the function  y  is

 dydx=ex(sinx-cosx)sin2x,xπ ,nZ .


2.  y=esin-1x .

Ans: The given function is  y=esin-1x .

Then, we have

 dydx=ddx(esin-1x)=esin-1x × ddx(sin-1x)=esin-1x × 11-x2=esin-1x1-x2 

Therefore, the derivative of the function  y  is

dydx=esin-1x1-x2,x(-1,1) .


3.  y=ex3 .

Ans: The given function is  y=ex3 .

Then by applying the chain rule of derivatives we have,

dydx=ddx(ex3)=ex3×ddx(x3)=ex3 × 3x2 .

Therefore, the derivative of the function  y  is

dydx=3x2ex3 .


4.y=sin(tan1ex)

Ans:  The given function is  y=sin(tan-1e-x) .

Now, applying the chain rule of derivatives, give 

 dydx=ddx[sin(tan-1e-x)]=cos(tan-1e-x×ddx(tan-1e-x)=cos(tan-1e-x)× 11+(e-x)2 ×ddx(e-x)=-cos(tan-1e-x)1+e-2x × e-x 

Therefore, the derivative of the function  y  is

dydx=-e-xcos(tan-1e-x)1+e-2x .


5.  y=log(cos(ex)) 

Ans:  Let  y=log(cos(ex)) 

Now, by applying the chain rule of derivatives give

dydx=ddx[log(cos(ex))]=1cosex × ddx(cos(ex))=1cosex × (-sin(ex)) ×ddx(ex)=-sinexcosex × ex 

Therefore, the derivative of the function  y  is

dydx=-extan(ex),x(2n+1) π 2,nN .


6. y=ex+ex2+...+ex5 .

Ans: The given function is  y=ex+ex2+...+ex5 .

Then, differentiating with respect to  x  both sides, give

dydx=ddx(ex+ex2+...+ex5) 

=ddx(ex)+ddx(ex2)+ddx(ex4)+ddx(ex5) , applying the sum rule of derivatives.

=ex+[ex2 × ddx(x2)]+[ex3 × ddx(x3)]+[ex4 × ddx(x4)]+[ex5 × ddx(x5)]=ex+(ex2 × 2x)+(ex3 ×3x2)+(ex4×4x3)+(ex5 × 5x4) 

Therefore, the derivative of the function  y  is

dydx=ex+2xex2+3x2ex3+4x3ex4+5x4ex5 .


7. y=ex,x>0  .

Ans: The given function is  y=ex .

Then squaring both sides both sides of the equation give

y2=ex 

Now, differentiating both sides with respect to  x  gives

ddx(y2)=ddx(ex) 

2ydydx=exddx(x)2ydydx=ex12 × 1xdydx=ex4yx 

dydx=ex4exx , substituting the value of  y .

Therefore, 

dydx=ex4xex,x0 .


8.  y=log(logx),x>1 .

Ans: The given function is  y=log(logx) .

Now, differentiating both sides with respect to  x  gives 

dydx=ddx [ log(logx) ]  

=1logx×ddx(logx) , by applying the chain rule of derivatives.

=1logx×1x 

Therefore,  dydx=1xlog(x),  x>1 .


9.y=cosxlogx,x>0 .

Ans: The given function is  y=cosxlogx .

Differentiating both sides with respect to  x  gives

dydx=ddx(cos) × logx-cosx ×ddx(logx)(logx)2 , by applying the quotient rule.

=-sinxlogx-cosx×1x(logx)2 

Therefore,

dydx=[ xlogxsinx+cosx]x(logx)2,x>0 .


10.y=cos(logx+ex),x>0

Ans: The given function is  y=cos(logx+ex) .

Then differentiating both sides with respect to  x  gives

 dydx=ddx[cos(logx+ex)] .

 dydx=-sin [ logx+ex ] × ddx(logx+ex) , by applying the chain rule of derivatives.

=-sin(logx+ex× [ddx(logx)+ddx(ex)]=-sin(logx+ex× (1x+ex) 

Therefore,  dydx=-(1x+ex)sin(logx+ex) .


Exercise 5.5

Differentiate the functions given in Exercises 1 to 11 w.r.t  x .

1.  y=cosx × cos2x × cos3x .

Ans: The given function is  y=cosx × cos2x × cos3x .

First, taking logarithm both sides of the equation give,

 logy=log(cosx × cos2x × cos3x) 

 logy=log(cosx)+log(cos2x)+log(cos3x) , by the property of logarithm.

Now, differentiating both sides of the equation with respect to  x  gives

1ydydx=1cosx × ddx(cosx)+1cos2x × ddx(cos2x)+1cos3x × ddx(cos3x)dydx=y[-sinxcosx-sin2xcos2x × ddx(2x)-sin3xcos3x × ddx(3x)] 

Therefore,

dydx=-cos x × cos2x × cos3x[tanx+2tan2x+3tan3x] .


2.  y=(x1)(x2)(x3)(x4)(x5) .

Ans: The given function is  y=(x-1)(x-2)(x-3)(x-4)(x-5) .

First taking logarithm both sides of the equation give

logy=log(x-1)(x-2)(x-3)(x-4)(x-5)logy=12log[(x-1)(x-2)(x-3)(x-4)(x-5)]logy=12[log { (x-1)(x-2) } -log { (x-3)(x-4)(x-5) } ]logy=12 [ log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5) ]  

Now, differentiating both sides of the equation with respect to  x  give

dydx=12ddx [ log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5) ]  .

1ydydx=12[1x-1 × ddx(x-1)+1x-2 × ddx(x-2)-1x-3 × ddx(x-3)-1x-4 × ddx(x-4)-1x-5 × ddx(x-5)]

dydx=y2(1x-1+1x-2-1x-3-1x-4-1x-5) 

Therefore,

dydx=12(x-1)(x-2)(x-3)(x-4)(x-5)[1x-1+1x-2-1x-3-1x-4-1x-5] .


3. Differentiate the function  y=(logx)cosx  with respect to  x .

Ans: The given function is  y=(logx)cosx .

First, taking logarithm both sides of the equation give 

 logy=cosx.log(logx) .

Now, differentiating both sides of the equation with respect to  x  give

1y × dydx=ddx(cosx) × log(logx)+cosx × ddx[log(logx)] 

1y × dydx=-sinxlog(logx)+cosx × 1logx × ddx(logx) , by applying the chain rule.

dydx=y[-sinxlog(logx)+cosxlogx × 1x] 

Therefore,

dydx=(logx)cosx[cosxxlogx-sinx × log(logx)] .


4.  y=xx-2sinx .

Ans: The given function is  y=xx-2sinx .

Now, let  xx=u                                                                       …… (1)

and  2sinx=v .                                                                           …… (2)

Therefore,  y=u-v .                                                                 …… (3)

Then differentiating the equation (3) with respect to  x  gives

 dydx=dudxdvdx                                                                        …… (4)

Now, taking logarithm both sides of the equation (1) give

 log(u)=log(xx)logu=xlogx 

Differentiating both sides of the equation with respect to  x  gives 1ududx=[ddx(x) × logx+x × ddx(logx)]dudx=u[× logx+x × 1x]dudx=xx(logx+1) 

dudx=xx(1+logx)                                                       …… (5) 

Now, taking logarithm both sides of the equation (2) give

log(2sinx)=logv 

logv=sinx × log2 .

Differentiating both sides of the equation with respect to  x , give

1v × dvdx=log2 × ddx(sinx)dvdx=vlog2cosx 

dvdx=2sinxcosxlog2                                                  …… (6)      

Therefore, from the equation (4), (5) and (6) give

dydx=xx(1+logx)-2sinxcosxlog2 .


5.y=(x+3)2(x+4)3(x+5)4 .

Ans:  The given function is  y=(x+3)2(x+4)3(x+5)4 .

First, taking logarithm both sides of the equation give

logy=log[(x+3)2(x+4)3(x+5)4] 

logy=2log(x+3)+3log(x+4)+4log(x+5) 

Now, differentiating both sides of the equation with respect to  x , give

1y × dydy=2 × 1x-3 × ddz(x+3)+3 × 1x+4 × ddx(x+4)+4 × 1x+5 × ddx(x+5)dydx=y[2x+3+3x+4+4x+5]dydx=(x+3)2(x+4)3(x+5)4 × [2x+3+3x+4+4x+5]dydx=(x+3)2(x+4)3(x+5)4 × [2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)(x+3)(x+4)(x+5)]dydx=(x+3)2(x+4)2(x+5)2-[2(x2+9x+20)+3(x2+9x+15)+4(x2+7x+12)] 

Therefore,

dydx=(x+3)(x+4)2(x+5)3(9x2+70x+133) .


6.y=(x+1x)x+x(1+1x) .

Ans: The given function is  y=(x+1x)x+x(1+1x) .

First, let  u=(x+1x)x and  v=x(1+1x) 

Therefore,  y=u+v .                                         …… (1)

Differentiating the equation (1) both sides with respect to  x  give

 dydx=dudx=dvdx …... (2)

Now,  u=(x+1x)x 

 logu=log(x+1x)x 

 logu=xlog(x+1x) 

Differentiating both sides of the equation with respect to  x  gives

1ududx=ddx(x) × log(x+1x)+x × ddx[log(x+1x)]1ududx=1 × log(x+1x)+x × 1(x+1x) × ddx(x+1x)dudx=u[log(x+1x)+x(x+1x) × (x+1x2)]dudx=(x+1x)x[log(x+1x)+(x-1x)(x+1x)]dudx=(x+1x)x[log(x+1x)+x2+1x2-1] 

dudx=(x+1x)2[x2+1x2-1+log(x+1x)] …… (3)

Also,  v=x(x+1x) 

logv=log[xx(x+1x)]logv=(x+1x)logx 

Differentiating both sides of the equation with respect to  x  gives

1v × dvdx=[ddx(1+1x)] × logx+(1+1x) × ddxlogx1vdvdx=-logxx2+1x+1x2 

dvdx=v[-logx+x+1x2]           ……. (4)

Hence, from the equations (2), (3) and (4), give

dydx=(x+1x)x[x2-1x2+1+log(x+1x)]+x(x+1x)(x+1-logxx2) .


7.y=(logx)x+xlogx .

Ans: The given function is  y=(logx)x+xlogx .

Then, let  u=(logx)x  and  v=xlogx .

Therefore,  y=u+v .

Differentiating both sides of the equation with respect to  x  gives

dydx=dudx+dvdx                             ……. (1)

Now,  u=(logx)x 

logu=log[(logx)x]logu=xlog(logx) 

Differentiating both sides of the equation with respect to  x  gives

1ududx=ddx(x) × log(logx)+x × ddx[log(logx)]dudx=u[× log(logx)+x × 1logx × ddx(logx)]dudx=(logx)x[log(logx)+xlogx × 1x] 

dudx=(logx)x[log(logx)+1logx]dudx=(logx)x=[log(logx) × logx+1logx] 

dudx=(logx)x-1[1+logx × log(logx)] ……. (2)

Again,  v=xlogx 

logv=log(xlogx)logv=logxlogx=(logx)2

Differentiating both sides of the equation with respect to  x  gives

1v × dxdx=ddx[(logx)2]1v × dxdx=2(logx) × ddx(logx)dvdx=2xlogxlogxx 

dvdx=2xlogx - 1 × logx ….…. (3)

Hence, from the equations (1), (2), and (3), gives

dydx=(logx)x-1[1+logx×log(logx)]+2xlogx-1 × logx .


8.y=(sinx)x+sin1x .

Ans: The given function is  y=(sinx)x+sin-1x .

Now, let  u=(sinx)x  and  v=sin-1x .

Therefore,  y=u+v .

Then, differentiating both sides of the equation with respect to  x  gives

dydx=dudx-dvdx       …….. (1)

Now,  u=(sinx)x 

logu=xlog(sinx)xlogu=xlog(sinx) 

Differentiating both sides of the equation with respect to  x  gives  

1ududx=ddx(x) × log(sinx)+x × ddx[log(sinx)]dudx=u[× log(sinx)+x × 1sinx × ddx(sinx)]dudx=(sinx)x[log(sinx)+xsinx × cosx] 

dudx=(sinx)x(xcotx+logsinx) ….… (2)

Again, v=sin-1x .

Differentiating both sides of the equation with respect to  x  gives  

dvdx=11-(x)2 × ddx(x)dvdx=11-x × 12x 

dvdx=12x-x2 

Hence, from the equations (1), (2) and (3), gives

dvdx=(sinx)x(xcotx+logsinx)+12x-x2 .


9. y=xsinx+(sinx)cosx .

Ans: The given function is  y=xsinx+(sinx)cosx .

Then, let  u=xsinx  and  v=(sinx)cosx .

Therefore,  y=u+v .

Differentiating both sides of the equation with respect to  x  gives

 dydx=dudx-dvdx               …… (1)

Now,  u=xsinx 

logu=xlog(xsinx)logu=sinxlogx 

Differentiating both sides of the equation with respect to  x  gives
1ududx=ddx(sinx) × logx+sinx × ddx(logx)dudx=u=[cosxlogx+sinx × 1x] 

dudx=xsinx[cosxlogx+sinxx] …....(2)

Again,  v=(sinx)cosx 

logv=log(sinx)cosxlogv=cosxlog(sinx) 

Then, differentiating both sides of the equation with respect to  x  gives

1vdvdx=ddx(cosx) × log(sinx)+cosx × ddx[log(sinx)]dvdx=v[-sinx × log(sinx)+cosx × 1sinx × ddx(sinx)]dudx=(sinx)cosx[-sinxlogsinx+cotxcosx] dvdx=(sinx)cosx [ cosxcotx-sinxlogsinx ]  …… (3)

Hence, from the equations (1), (2) and (3), gives

dudx=xsinx(cosxlogx+sinxx)+(sinx)cosx [ cosxcotx-sinxlogsinx ]  .


10. y=xxcosx+x2+1x21 .

Ans:  The given function is  y=xxcosx+x2+1x2-1 .

First, let  u=xxcosx  and  v=x2+1x2-1 .

Therefore,  y=u+v .

Differentiating both sides of the equation with respect to  x  gives

dydx=dudx-dvdx ……. (1)

Now,  u=xxcosx .

Then, differentiating both sides of the equation with respect to  x  gives 1ududx=ddx(x)×cosxlogx+x×ddx(cosx)×logx+xcosx×ddx(logx)dudx=u[1×cosx×logx+x×(sinx)logx+xcosx×1x]

dudx=xxcosx(cosxlogx-xsinxlogx+cosx) …… (2)

Again,  v=x2+1x2-1 

logv=log(x2+1)-log(x2-1) 

Differentiating both sides of the equation with respect to  x  gives

1v=dvdx=2xx2+1-2xx2-1dvdx=v[2x(x2-1)-2x(x2+1)(x2+1)(x2-1)]dudx=x2+1x2-1 × [-4x(x2+1)(x2-1)]

dvdx=-4x(x2-1)2 …….. (3)

Hence, from the equations (1), (2) and (3), give

dvdx=xxcosx[cosx(1+logx)-xsinxlogx]-4x(x2-1)2 .


11.y=(xcosx)x+(xsinx)1x .

Ans: The given function is  y=(xcosx)x+(xsinx)1x .

Then, let  u=(xcosx)x  and  v=(xsinx)1x .

Therefore,  y=u+v .

dydx=dudx+dvdx                                                          ……. (1)

Again,  u=(cosx)x 

logu=log(xcosx)xlogu=xlog(xcosx)logu=x [ logx+logcosx ] logu=xlogx+xlogcosx 

Differentiating both sides of the equation with respect to  x  gives

1ududx=ddx(xlogx+xlogcosx)dudx=u[{logx × ddx(x)+x × ddx(logx)}+{logcosx × ddx(x)+x × ddx(logcosx)}]dudx=(xcosx)x[{logx × 1+x × 1x}+{logcosx-1+x × 1cosx × ddx(cosx)}] 

dudx=(xcosx)x[{logx+1}+{logcosx-1+xcosx × (-sinx)}]dudx=(xcosx)x[(logx+1)+(logcosx-xtanx)] 

dudx=(xcosx)x[1-xtanx+(logx+logcosx)] 

Therefore,

dudx=(xcosx)x[1-xtanx+(logx(xcosx)]   …….. (2)

Again,  v=(xsinx)1x 

logv=log(xsinx)1xlogv=1xlog(xsinx)logv=1x(logx+logsinx)logv=1xlogx+1xlogsinx 

Differentiating both sides of the equation with respect to  x  gives

1vdvdx=ddx(1xlogx)+ddx[1xlog(sinx)]1vdvdx=[1xlogx × ddx(1x)+1x × ddx(logx)]+[log(sinx) × ddx(1x)+1x × ddx{(logsinx)}]1vdvdx=[1xlogx × (-1x2)+1x × 1x]+[log(sinx) × (-1x2)+1x × 1sinx × ddx(sinx)]1vdvdx=1x2(1-logx)+[1-logxx2+1xsinx × cosx]1vdvdx=1x2(xsinx)1x+[1-logxx2+-log(sinx)+xcotxx2]dvdx=(xsinx)1x[1logxlog(sinx)+xcotxx2] 

Therefore,

dvdx=(xsinx)1x[1-log(xsinx)+xcotxx2] ……. (3)

Hence, from the equations (1), (2) and (3), gives

dydx=(xcosx)x[1-xtanx+log(xcosx)]+(xsinx)1x[1-log(xsinx)+xcotxx2] .


Find  dydx  of the functions given in Exercises 12 to 15. 

12.xy+yx=1 .

Ans: The given function is  xy+yx=1 .

Then, let  xy=u  and  yx=v .

Therefore,  u+v=1 .

Differentiating both sides of the equation with respect to  x  gives

 dudx+dvdy=0 

Now,  u=xy                             ……. (1)

 logu=log(xy)logu=ylogx 

Differentiating both sides of the equation with respect to  x  gives

 1ududx=logxdydx+y × ddx(logx) 

 dudx=u[logxdydx+y × 1x]

Therefore,  dudx=xy[logxdydx+yx] ………… (2)

Also,  v=yx 

Taking logarithm both sides of the equation give

logv=log(y3)logv=xlogy 

Differentiating both sides of the equation with respect to  x  gives

1v ×dvdx=logy× ddx(x)+x ×ddx(logy) 

dvdx=v(logy× 1+x×1y ×dydx) 

Therefore,  dvdx=yx(logy+xydydx) ……... (3)

So, from the equation (1), (2) and (3), gives

xy(logxdydx+yx)+yx(logy+xydydx)=0(x2+logx+xyy-1)dydx=-(yxy-1+yxlogy) 

Hence,  dydx=-(yxy-1+yxlogy)xylogx+xyx-1 .


13.  yx=xy .

Ans: The given equation is  yx=xy .

Then, taking logarithm both sides of the equation give

 xlogy=ylogx .

Differentiating both sides of the equation with respect to  x  gives

logy × ddx(x)+x × ddx(logy)=logx × ddx(y)+y × ddx(logx)logy × 1+x × 1y × dydx=logx × dydx+y × 1xlogy+xydydx=logxdydx+yx(xy-logx)dydx=yx-logy 

(x-ylogxy)dydx=y-xlogyx(x-ylogxy)dydx=y-xlogyx 

Therefore, dydx=yx(y-xlogyx-ylogx) .


14.  (cosx)y=(cosy)x .

Ans: The given equation is  (cosx)y=(cosy)x .

Then, taking logarithm both sides of the equation give

ylogcosx=xlogcosy .

Now, differentiating both sides of the equation with respect to  x  gives

logcosx × dydx+y × ddx(logcosx)=logcosy × ddx(x)+x × ddx(logcosy)logcosxdydx+ycosx × (-sinx)=logcosy+xcosy(-siny) × dydxlogcosxdydx-ytanx=logcosy-xtanydydx(logcosx+xtany)dydx=ytanx+logcosy 

Therefore,dydx=ytanx+logcosyxtany+logcosx .


15.  xy=e(x-y) .

Ans:  The given equation is  xy=e(x-y) .

Then, taking logarithm both sides of the equation give

log(xy)=log(ex-y)logx+logy=(x-y)logelogx+logy=(x-y) × 1logx+logy=x-y 

Now, differentiating both sides of the equation with respect to  x  gives  ddx(logx)+ddx(logy)=ddx(x)-dydx1x+1ydydx=1-1x(1+1y)dydx=x-1x  

Therefore,  dydx=y(x-1)x(y+1) .


16. Find the derivative of the function given by  

f(x)=(1+x)(1+x2)(1+x4)(1+x8)  and hence find  f(1) .

Ans: The given function is  f(x)=(1+x)(1+x2)(1+x4)(1+x8) .

By taking logarithm both sides of the equation give

logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8) 

Now, differentiating both sides of the equation with respect to  x  gives  1f(x) × ddx [ f(x) ] =ddxlog(1+x)+ddxlog(1+x2)+ddxlog(1+x4)+ddxlog(1+x8)1f(x) × f  (x)=11+x × 1dx(1+x)+11+x2 × ddxlog(1+x2)+11+x4 × ddxlog(1+x4)+11+x8 × ddxlog(1+x8) (x)=f(x)[11+x+11+x2 × 2x+11+x4 × 4x3+11+x8 × 8x7] 

Therefore,

 (x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8] 

So,
 (1)=(1+1)(1+12)(1+14)(1+18)[11+1+× 11+12+× 131+14+× 171+18]=2 × 2 × 2 × 2[12+22+42+82]=16 × (1+2+4+82)=16 × 152=120 

Hence,  {f}'(1)=120 .


17. Differentiate  y=(x25x+8)(x3+7x+9)  in three ways as mentioned below. Do they all give the same answer? 

(a) by using product rule. 

Ans: The given function is  y=(x2-5x+8)(x3+7x+9) .

Now, let consider  u=(x2-5x+8)  and  v=(x3+7x+9) 

Therefore,  y=uv .

dydx=dudv.v+u.dudxdydx=ddx(x2-5x+8).(x3+7x+9)+(x2-5x+8).ddx(x3+7x+9)dydx=(2x-5)(x3+7x+9).(x2-5x+8)(3x2+7)dydx=2x(x3+7x+9)-5(x2-5x+8)+x2(3x2+7)-5x(3x2+7)-8(3x2+7)dydx=(2x4+14x2+18x)-5x3-35x-45+(3x4+7x2)-15x3-35x+24x2+56 

Hence,  dydx=5x4-20x3+45x2+52x+11 .


(b) by expanding the product to obtain a single polynomial.

Ans: The given function is

y=(x2-5x+8)(x3+7x+9) .

Then, calculating the product, gives

y=x2(x3+7x+9)-5x4(x3+7x+9)+8(x3+7x+9)y=x5+7x3+9x2-5x3-26x2+11x+72 

Now, differentiating both sides of the equation with respect to  x  gives

dydx=ddx(x5+7x3+9x2-5x3-26x2+11x+72)=ddx(x5)-5ddx(x4)+15ddx(x3)-26ddx(x3)+11ddx(x)+ddx(72)=5x4-5 × 4x3+15 × 3x2-26 × 2x+11 × 1+0 

Hence,  dydx=5x4-20x3+45x2-52x+11 .


(c) by logarithmic differentiation.

Ans:     The given function is

y=(x2-5x+8)(x3+7x+9 .

Now, taking logarithm both sides of the function give

logy=log(x2-5x+8)+log(x3+7x+9) 

Differentiating both sides of the equation with respect to  x  gives  1ydydx=ddxlog(x2-5x+8)+ddxlog(x3+7x+9)1ydydx=1x2-5x+8.ddx(x2-5x+8)+1x3+7x+9.ddx(x3+7x+9)dydx=y[1x2-5x+8 × (2x-5)+1x3+7x+9 × (3x2+7)]dydx=(x2-5x+8)(x3+7x+9)[2x-5x3-5x+8+3x2+7x3+7x+9]dydx=(x2-5x+8)(x3+7x+9)[(2x-5)(x3+7x+9)+(3x2+7)(x2-5x+8)(x3-5x+8)+(x3+7x+9)]dydx=2x(x3+7x+9x2)-5(x3+7x+9)+3x2(x2-5x+8)+7(x3+7x+9)dydx=(2x4+14x2+18x)+(5x3-35x+45)+(3x4-15x3+24x2)+(7x2+35x+56) 

Therefore,  dydx=5x2-20x3+45x2-52x+11 .

Hence, comparing the above three results, it is concluded that the derivative  dydx  are the same for all methods.


18. If  uv , and  w  are functions of  x  , then show that  ddx(u.v.w)=dudxv.w+ududx.w+u.vdwdx  in two ways - first by using repeated application of product rule, second by logarithmic differentiation. 

Ans: Let the function  y=u.v.w=u.(v.w) .

Then applying the product rule of derivatives, give

 dydx=dudx.(v.w)+u.ddx(v.w)           

dydx=dudxv.w+u[dvdx.w+v.dvdx]         (Using the product rule again)

Thus,

dydx=dudxv.w+u.dvdx.w+u.vdwdx .

Now, take logarithm both sides of the function  y=u.v.w.

Then, we have  logy=logu+logv+logw .

Differentiating both sides of the equation with respect to  x  gives  1y.dydx=ddx(logu)+ddx(logv)+ddx(logw)1y.dydx=1ududx+1vdvdx+1wdwdxdydx=y(1ududx+1vdvdx+1wdwdx)dydx=u.v.w(1ududx+1vdvdx+1wdwdx) 

Hence, dydx=dudxv.w+udvdx.w+u.vdwdx.

Exercise 5.6 

If  x,y  are connected parametrically by the equation given below, without eliminating the parameter, Find  dydx .

1.x=2at2,y=at4 .

Ans: The given equations are 

 x=2at2                                                                             …… (1)

and  y=at4                                                                       …… (2)

Then, differentiating both sides of the equation (1) with respect to  t  gives

dxdt=ddt(2at2)=2a ×ddt(t2)=2a × 2t=4at .                        …… (3)

Also, differentiating both sides of the equation (2) with respect to  t  gives

dydt=ddt(at4)=a ×ddt(t4)=a × 4 ×t3=4at3                           …… (4)

Now, dividing the equations (4) by (3) gives

dydx=(dydt)(dxdt)=4at34at=t2 .

Hence,  dydx=t2 .


 2.  x=acosθ,y=bcosθ .

Ans:  The given equations are 

x=acos θ                                                                              …… (1)

and  y=bcos θ                                                                       …… (2)

Then, differentiating both sides of the equation (1) with respect to   θ   gives

dxθ =dθ (acos θ )=a(-sin θ )=-asin θ  .                                      …… (3)

Also, differentiating both sides of the equation (1) with respect to   θ   gives

dyθ=dθ (bcos θ )=b(-sin θ )=-bsin θ                                         …… (4)

Therefore, dividing the equation (4) by (3) gives

dydx=(dyθ )(dxdθ )=-bsin θ-asinθ=ba .

Hence,   dydx=ba .


3.  x=sint,y=cos2t .

Ans:  

The given equations are

x=sint                                                                         …… (1)

and  y=cos2t                                                                …… (2)

Then, differentiating both sides of the equation (1) with respect to  t  gives

dxdt=ddt(sint)=cost .                                                    …… (3)

Also, differentiating both sides of the equation (2) with respect to  t  gives

dydt=ddt(cos2t)=sin2t × ddt(2t)=-2sin2t                           …… (4)

Therefore, by dividing the equation (4) by (3) gives

dydx=(dydt)(dxdt)=-2sin2tcost=-2 × 2sintcostcost=-4sint 

Hence,  dydx=-4sint .


4.  x=4t,y=4t .

Ans: The given equations are

x=4t                                                                    …… (1)

 and  y=4t                                                             …… (2)

Now, differentiating both sides of the equation (1) with respect to  t  gives

 dxdt=ddt(4t)=4 .                                                    …… (3)

Also, differentiating both sides of the equation (2) with respect to  t  gives

dydt=ddt(4t)=4 × ddt(1t)=4 × (-1t2)=-4t2                    …… (4)

Therefore, dividing the equation (4) by (3) gives

 dydx=(dydt)(dxdt)=(-4t2)4=-1t2 .

Hence,  dydx=-1t2 .


5.  x=cosθcos2θ,y=sinθsin2θ .

Ans: The given equations are

x=cos θ -2cos θ                                                                                        …… (1)

 and  y=sin θ -sin2 θ                                                                                     …… (2)

Then, differentiating both sides of the equation (1) with respect to   θ   gives

 dxθ =dθ (cos θ -cos2 θ )=dθ (cos θ )-dθ (cos2 θ )=-sin θ (-2sin2 θ )=2sin2 θ -sin θ   … (3)

Also, differentiating both sides of the equation (2) with respect to   θ   gives

 dyθ =dθ (sin θ -sin2 θ )=dθ (sin θ )-dθ (sin2 θ )=cos θ -2cos2 θ                             ….. (4)

Therefore, dividing the equation (4) by (3) gives

 dydx=(dyθ )(dxθ )=cos θ -2cos2 θ 2sin2 θ -sin θ  .

Hence,  dydx=cosθ -2cos2θ2sin2θ-sinθ


6.  x=a(θsinθ),y=a(1+cosθ) .

Ans:  The given equations are

  x=a( θ -sin θ )                                                                       …… (1)

and  y=a(1+cos θ )                                                                …… (2)

Then, differentiating on both sides of the equation (1) with respect to   θ   gives

dxθ =a[dθ θ )-dθ (sin θ )]=a(1-cos θ )                                   …… (3)

Also, differentiating both sides of the equation (2) with respect to   θ   gives

dyθ =a[dθ (1)+dθ (cos θ )]=a[0+(-sin θ )]=-asin θ                   …… (4)

Therefore, by dividing the equation (4) by (3) gives

dydx=(dyθ )(dxθ )=-asin θ a(1-cos θ )=-2sin θ 2cos θ 22sin2 θ 2=-cos θ 2sin θ 2=-cot θ 2 .

Hence,  dydx=-cot θ 2 .


7.x=sin3tcos2t,y=cos3tcos2t .

Ans: The given equations are,

x=-sin3tcos2t                                                                                …… (1)

 and  y=cos3tcos2t                                                                         …… (2)

Then, differentiating both sides of the equation (1) with respect to  t  gives

dxdt=ddt[sin3tcos2t] 

=cos2tddt(sin3t)-sin3× ddtcos2tcos2t=cos2t × 3sin2× ddt(sint)-sin3× 12cos2t × ddt(cos2t)cos2t=3cos2t × sin2tcost-sin3t2 × (-2sin2t)cos2tcos2t 

Also, differentiating both sides of the equation (2) with respect to  t  gives

dxdt=3cos2tsin2tcost+sin3tsin2tcos2tcos2t .                                                       …… (3)

dydt=ddt[cos3tcos2t]=cos2t × ddt(cos3t)-cos3×ddt(cos2t)cos2t=3cos2tcos2t(-sint)-cos3× 12(cos2t) × ddt(cos2t)cos2t 

dydt=-3cos2t × cos2×sint+cos3tsin2tcos2t × cos2t                                                   …… (4)

Thus, dividing the equation (4) by the equation (3) gives

dydx=(dxdt)(dxdt)=-3cos2t × cos2× sint+cos3tsin2t3cos2tcostsin2t+sin3tsin2t 

=sintcost[-3cos2t × cost+2cos3t]sintcost[3cos2tsint+2sin3t] 

=[-3(2cos2t-1)cost+2cos3t][3(1-2sin3t)sint+2sin3t]  

[cos2t=(2cos2t-1)cos2t=(1-2sin2t)] 

=-4cos3t+3cost3sint-4sin3t=-cos3tsin3t
[cos3t=4cos3t-3costsin3t=3sint-4sin2t] 

Hence,  dydx=-cot3t .


8.  x=a(cost+logtant2),y=asint .

Ans: The given equations are

x=a(cost+logtant2)                                                              …… (1)

and  y=asint                                                                            …… (2)

Then, differentiating both sides of the equation (1) with respect to  t  gives

dxdt=a × [dθ(cost)+dθ (logtant2)] 

=a[-sint+1tant2 × ddt(tant2)]=a[-sint+cott2 × sec2t2 × ddt(t2)] 

=a(-sint+cost2sint2 ×1cos2t2 × 12) 

=a(-sint+12sint2cost2)=a(-sint+1sint)=a(-sin2t+1sint) 

Therefore,  dxdt=acos2tsint                                                     …… (3)

Also, differentiating both sides of the equation (2) with respect to  t  gives

dydt=addt(sint)=acost                                                         …… (4)

Thus, dividing the equation (4) by the equation (3) gives

dydx=(dydt)(dxdt)=acost(acos2tsint)=sintcost=tant .

Hence,  dydx=tant .


9.  x=asecθ,y=btanθ

Ans: The given equations are 

x=asec                                                                                        …… (1)

 and  y=btan θ                                                                               …… (2)

Then, differentiating both sides of the equation (1) with respect to   θ   gives

dxθ =a × dθ (sec θ )=asec θ tan θ                                                       …… (3)

Also, differentiating both sides of the equation (2) with respect to   θ   gives

dyθ =b × dθ (tan θ )=bsec2 θ                                                            …… (4)

Thus, dividing the equation (4) by the equation (3) gives

dydx=(dyθ )(dxθ )=bsec2 θ asec θ tan θ =basec θ tan θ =-bcos θ acos θ sin θ =ba × 1sin θ =bacosec θ  

Hence,  dydx=bacosec θ  .


10.  x=a(cos θ + θ sin θ ), y=a(sin θ - θ cos θ )

Ans:  The given equations are

x=a(cos θ + θ sin θ )                                                                          …… (1)

and  y=a(sin θ - θ cos θ )                                                                   …… (2)

Then, differentiating both sides of the equation (1) with respect to   θ   gives

dxθ =a[dθ cos θ +dθ θ sin θ )]=a[-sin θ + θ dθ (sin θ )+sin θ dθ θ )] 

=a[-sin θ + θ cos θ +sin θ ] .

Therefore,  dxθ =a θ cos θ                                                                  …… (3)

Also, differentiating both sides of the equation (2) with respect to   θ   gives

dyθ =a[dθ (sin θ )-dθ θ cos θ )]=a[cos θ -{ θ dθ (cos θ )+cos θ × dθ θ )}] 

dyθ =a[cos θ + θ sin θ -cos θ ] 

Therefore,  dyθ =θ sin θ                                                                    …… (4)                                     

Thus, dividing the equation (4) by the equation (3) gives

dydx=(dyθ )(dxθ )=θ sin θ θ sin θ =tan θ  .

Hence,  dydx=tan θ  .


11.Ifx=asin1t,y=acos1t ,  show that,  dydx=yx .

Ans: The given parametric equations are  x=asin-1t  and  y=acos-1t .

Now,  x=asin-1t  and  y=acos-1t 

x=(asin-1t)  and  y=(acos-1t)12 

x=a12sin-1t  and  

y=a12cos-1t 

Therefore, first consider  x=a12sin-1t .

Take logarithms on both sides of the equation.

Then, we have

logx=12sin-1tloga .

Then, differentiating both sides of the equation with respect to  t  gives

1x × dxdt=12loga ×ddt(sin-1t)dxdt=x2loga × 11-t2 

Therefore,  dxdt=xloga21-t2 .                                               …… (1)

Again, consider the equation y=a12cos-1t .

Take logarithm both sides of the equation.

Then, we have

logy=12cos-1tloga 

Differentiating both sides of the equation with respect to  t  gives

 1y × dxdt=12loga × ddt(cos-1t)dxdt=yloga2 × (11-t2) 

Therefore,  dxdt=-yloga21-t2 .                                             …… (2)

Thus, dividing the equation (2) by the equation (1) gives 

 dydx=(dydt)(dxdt)=(-yloga21-t2)(xloga21-t2)=yx .

Hence,dydx=yx .


Exercise 5.7 

Find the second order derivatives of the functions given in Exercises 1 to 10. 

1.  y=x2+3x+2 .

Ans:  The given function is  y=x2+3x+2 .

Then, differentiating both sides with respect to  x  gives

dydx=ddx(x2)+ddx(3x)+ddx(2)=2x+3+0=2x+3 

That is,

dydx=2x+3 .

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx(2x+3)=ddx(2x)+ddx(3)=2+0=2 

Hence,  d2ydx2=2.

2.  y=x20 .

Ans: The given function is  y=x20 .

Then, differentiating both sides with respect to  x  gives dydx=ddx(x20)=20x19 

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx(20x19)=20ddx(x19)=20(19)x18=380x18 .

Hence, d2ydx2=380x18 .


3.  y=xcosx .

Ans: The given function is  y=x.cosx .

Then, differentiating both sides with respect to  x  gives

dydx=ddx(x.cosx)=cosx.ddx(x)+xddx(cosx)=cosx.1+x(-sinx)=cosx-xsinx 

That is,  dydx=cosx-xsinx .

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx(cosx-xsinx)=ddx(cosx)-ddx(xsinx)=-sinx- [ sinxddx(x)+xddx(sinx) ] =-sinx-(sinx+xcosx) 

Hence,  d2ydx2=-(xcosx+2sinx) .


4.  y=logx .

Ans: The given function is  y=logx .

Then, differentiating both sides with respect to  x  gives

dydx=ddx(logx)=1x 

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx(1x)=-1x2 

Hence,  d2ydx2=-1x2 .


5.  y=x3logx .

Ans: The given function is  y=x3logx .

Then, differentiating both sides with respect to  x  gives

dydx=ddx[x3logx]=logx.ddx(x3)+x3ddx(logx)=logx.3x2+x3.1x=logx.3x2+x2 

That is,  dydx=x2(1+3logx)

Again, differentiating both sides with respect to  x  gives
d2ydx2=ddx(x2(1+3logx))=(1+3logx).ddx(x2)+x2ddx(1+3logx)=(1+3logx).2x+x3.3x=2x+6logx+3x=5x+6xlogx 

Hence,  d2ydx2=x(5+6logx) .


6.  y=exsin5x 

Ans: The given function is  y=exsin5x .

Then, differentiating both sides with respect to  x  gives

 dydx=ddx[exsin5x]=sinxddx(ex)+exddx(sin5x)dydx=sin5x.ex+ex.cos5x.ddx(5x) 

That is,  dydx=ex(sin5x+5cos5x) .

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx[ex(sin5x+5cos5x)]=(sin5x+5cos5x).ddx(ex)+ex.ddx(sin5x+5cos5x)=(sin5x+5cos5x)(ex)+ex[cos5x.ddx(5x)+5(-sin5x).ddx(5x)]=ex(sin5x+5cos5x)+ex(5cos5x-25sin5x) 

=ex(10cos5x-24sin5x) .

Hence,  d2ydx2=2ex(5cox5x-12sin5x) .


7.  y=e6xcos3x .

Ans:  The given function is  y=e6xcos3x .

Then, differentiating both sides with respect to  x  gives

dydx=ddx(e6xcos3x)=cos3x × ddx(e6x)+e6x × ddx(cos3x)dydx=cos3x × e6x × ddx(6x)+e6x × (-sin3x) × ddx(3x) 

Therefore,

dydx=6e6xcos3x-3e6xsin3x …… (1)

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx(6e6xcos3x-3e6xsin3x)=6 × ddx(e6xcos3x)-3 × ddx(e6xsin3x) 

=6×[6e6xcos3x-3e6xsin3x]-3 × [sin3x × ddx(e6x)+e6x × ddx(sin3x)] [using (1)]

=36e6xcos3x-18e6xsin3x-3[sin3x × e6x × 6+e6x × cos3x-3]=36e6xcos3x-18e6xsin3x-18e6xsin3x-9e6xcos3x 

Hence,  d2ydx2=9e6x(3cos3x-4sin3x) .


8.  y=tan1x .

Ans: The given function is  y=tan-1x .

Then, differentiating both sides with respect to  x  gives

dydx=ddxtan-1x=11-x2 

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx(11+x2)=ddx(1+x2)-1=(-1) × (1+x2)2 × ddx(1+x2)=-1(1+x2)2 × 2x 

Hence,  

d2ydx2=-2x(1+x2)2 .


9.  y=log(logx) .

Ans: The given function is  y=log(logx) .

Now, differentiating both sides with respect to  x  gives

 dydx=ddx [ log(logx) ] =1logx × ddx(logx)dydx=(xlogx)-1 

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx[(xlogx)-1]=(-1) × (xlogx)-2ddx(xlogx)=-1(xlogx)2 × [logx × ddx(x)+x × ddx(logx)]=-1(xlogx)2 × [logx × 1+x × 1x] 

Hence,d2ydx2=-(1+logx)(xlogx)2 .


10.  y=sin(logx) .

Ans: The given function is  y=sin(logx) .

Now, differentiating both sides with respect to  x  gives

 dydx=ddx [ sin(logx) ] =cos(logx) × ddx(logx)=cos(logx)x 

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx[cos(logx)x]=x[cos(logx)]-cos(logx) × ddx(x)x2=x[-sin(logx) × ddx(logx)]-cos(logx) × 1x2=-xsin(logx) × 1x-cos(logx)x2 

Hence,  d2ydx2=[-sin(logx)-cos(logx)]x2 .


11. If  y=5cosx-3sinx , prove that  d2ydx2+y=0

Ans: The given equation is  y=5cosx-3sinx .

Then, differentiating both sides with respect to  x  gives

dydx=ddx(5cosx)-ddx(3sinx)=5ddx(cosx)-3ddx(sinx)=5(-sinx)-3cosx 

Therefore,  dydx=-(5sinx+3cosx) .

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx [ -(5sinx+3cosx) ]  

=-[× ddx(sinx)+3 × ddx(cosx)][ 5cosx+3(-sinx) ] =-y 

That is, d2ydx2=-y .

Hence,  d2ydx2+y=0 .


12. If  y=cos1x , Find  d2ydx2  in the terms of  y  alone.

Ans: The given function is  y=cos-1x .

Now, differentiating both sides with respect to  x  gives

dydx=ddx(cos-1x)=-11-x2=-(1-x2)-12 

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx[-(1-x2)-12]=(-12) × (1-x2)-32 × ddx(1-x2)=1(1-x2)32 × (-2x) 

d2ydx2=-x(1-x2)3                                                                        …… (1)                                                                                                          

Now,  y=cos-1xx=cosy .

Therefore, substituting  x=cosy  into equation (1), gives

d2xdy2=-cosy(1-cos2y)3=-cosysin3y=-cosysiny × 1sin2y 

Hence,d2ydx2= -coty × cosec2y .


13. If  y=3cos(logx)+4sin(logx) , show that  x2y2+xy1+y=0 .

Ans: The given equations are  y=3cos(logx)+4sin(logx)                                …… (1)

and  x2y2+xy1+y=0                                                                                 …… (2)

Then, differentiating both sides of the equation (1) with respect to  x  gives

 y1=3 × ddx [ cos(logx) ] +4 × ddx [ sin(logx) ] =3 × [-sin(logx) × ddx(logx)]+4 × [cos(logx) × ddx(logx)] 

y1=-3sin(logx)x+4cos(logx)x=4cos(logx)-3sin(logx)x 

Again, differentiating both sides with respect to  x  gives

y2=ddx(4cos(logx)-3sin(logx)x) 

=xddx[{ cos(logx) } - { 3sin(logx) } ]{ 4cos(logx)-3sin(logx) } ×1x2=x[-4sin(logx)ddx(logx)-3cos(logx)ddx(logx)]-4cos(logx)+3sin(logx)x2 

=x[-4sin(logx)1x-3cos(logx)1x]-4cos(logx)+3sin(logx)x2 

=-4sin(logx)-3cos(logx)-4cos(logx)+3sin(logx)x2 

Therefore,  

y2=-sin(logx)-7cos(logx)x2 .

Now, substituting the derivatives  y1  , y2  and  y  into the LHS of the equation (2) gives

x2y2+xy1+y=x2(-sin(logx)-7cos(logx)x2)+x(4cos(logx)-3sin(logx)x2)+3cos(logx)+4sin(logx)=-sin(logx)-7cos(logx)+4cos(logx)-3sin(logx)+4sin(logx)=0 

Hence, it has been proved that  x2y2+xy1+y=0 .


14. If  y=Aemx+Benx , show that  d2ydx2(m+n)dydx+mny=0 .

Ans: The given equations are  y=Aemx+Benx                                      …… (1)

and  d2ydx2-(m+n)dydx+mny=0                                                       ……. (2)

Then, differentiating both sides of the equation (1) with respect to  x  gives

dydx=A.ddx(emx)+B.ddx(emx)=A.emx.ddx(mx)+B.enx.ddx(nx)=Amemx+Bnenx 

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx(Amemx+Bnenx)=Am.ddx(emx)+Bn.ddx(enx)=Am.emx.ddx(mx)+Bn.enx.ddx(nx) 

Therefore,  d2ydx2=Am2emx+Bn2enx .

Thus, substituting the derivatives  y1  , y2  and  y  into the LHS of the equation (2) gives

d2ydx2-(m+n)dydx+mny=Am2exmx+Bn2enx-(m+n).(Amemx+Bnenx)+mn(Aemx+Benx)=Am2exmx+Bn2enx-Amexmx+Bmnenx+Amnemx+Bn2enx+Amnemx+Bmnenx=0 

Thus, it has been proved that  d2ydx2-(m+n)dydx+mny=0 .


15. If  y=500e7x+600e7x , show that  d2ydx2=49y .

Ans: The given equation is  y=500e7x+600e-7x .                                     …… (1)

Then, differentiating both sides with respect to  x  gives

 dydx=500 × (e7x)+600 × ddx(-7x)=500 × e7x × ddx(7x)+600 × e-7x × ddx(-7x)=3500e7x-4200e-7x 

Again, differentiating both sides with respect to  x  gives

d2ydx2=3500 × ddx(e7x)-4200 × ddx(e-7x)=3500 × e7x × ddx(7x)-4200 × e-7x × ddx(-7x)=7 × 3500 × e7x+7 × 4200 × e-7x=49 × 500e7x+49 × 600e-7x=49(500e7x+600e-7x) 

=49y , using the equation (1).

Thus, it has been proved that  d2ydx2=49y .


16. If  ey(x+1)=1 , show that  d2ydx2=(dydx)2 .

Ans: The given equation is  ey(x+1)=1 .

Now,  ey(x+1)=1ey=1x+1 .

So, taking logarithm bth sides of the equation gives

 y=log1(x+1) 

Therefore, differentiating both sides with respect to  x  gives

dydx=(x+1)ddx(1x+1)=(x+1) × -1(x+1)2=-1x+1 

That is,

dydx=-1x+1                                                      …… (1)

Again, differentiating both sides with respect to  x  gives

d2ydx2=ddx=(1x+1)=-(-1(x+1)2)=1(x+1)2d2ydx2=(-1x+1)2 

d2ydx2=(dydx)2 , using the equation (1).

Thus, it is proved that  d2ydx2=(dydx)2 .


17.Ify=(tan1x)2 , show that  (x2+1)2y2+2x(x2+1)y1=2 .

Ans:  The given equations are  y=(tan-1x)2 .

Then, differentiating both sides with respect to  x  gives

y1=2tan-1xddx(tan-1x)y1=2tan-1× 11+x2(1+x2)y1=2tan-1x 

Again, differentiating both sides with respect to  x  gives

(1+x2)y2+2xy1=2(11+x2)(1+x2)y2+2x(1+x2)y1=2 

Thus, it has been proved that  (1+x2)y2+2x(1+x2)y1=2 .


Miscellaneous Exercise

Differentiate w.r.t. to  x , the following function. 

1.y=(3x29x+5)9 .

Ans: The given function is

y=(3x2-9x+5)9 .

Differentiating both sides with respect to  x  gives

dydx=ddx(3x2-9x+5)9=9(3x2-9x+5)8×ddx(3x2-9x+5)=9(3x2-9x+5)8×(6x-9x)=9(3x2-9x+5)8 ×3(2x-3)=27(3x2-9x+5)8(2x-3) 


2.y=sin3x+cos6x .

Ans: The given function is

y=sin3x+cos6x .

Differentiating both sides with respect to  x  gives

dydx=ddx=(sin3x)+ddx(cos6x)=3sin2x×ddx(sinx)+6cos5xddx(cosx)=3sin2x×cosx+6cos5x(-sinx)=3sin2xcosx(sinx-2cos4x)


3.  y=(5x)3cos2x .

Ans: The given function is  y=(5x)3cos2x .

First, take the logarithm of both sides of the function.

 logy=3cos2xlog5x .

Then, differentiating both sides with respect to  x  gives

1ydydx=3[log5.ddx(cos2x)+cos2x.ddx(log5x)]dydx=3y[log5x(-sin2x).ddx(2x)+cos2x.15x.ddx(5x)]dydx=3y[-2sin2xlog5x+cos2xx]dydx=3y[3cos2xx-6sin2xlog5x] 

Hence,  dydx=(5x)3cos2x[3cos2xx-6sin2xlog5x] .

 

4.  y=sin-1(xx),0x1 .

Ans: The given function is  y=sin-1(xx) .

Then, differentiating both sides with respect to  x  by using the chain rule gives

dydx=ddxsin-1(xx)=11-(xx)2×ddx(xx)=11-x3.ddx(x32)=11-x3×32.x12=3x21-x3 

Hence,

dydx=32x1-x3 .


5.y=cos-1x22x+7,-2<x<2 .

Ans: The given function is 

y=cos-1x22x+7 .

Then, differentiating both sides with respect to  x  using the quotient rule gives

dydx=2x+7ddx(cos-1x2)-(cos-1x2)ddx(2x+7)(2x+7)2=2x+7[-11-(x2)2.ddx(x2)]-(cos-1x2)122x+7.ddx(2x+7)2x+7=2x+7-14-x2-(cos-1x2)222x+72x+7=-2x+74-x2×(2x+7)-cos-1x2(2x+7)(2x+7) 

Hence,  dydx=-[14x22x+7+cos-1x2(2x+7)32] .


6.  y=cot1[1+sinx+1sinx1+sinx1sinx], 0<x<2 .

Ans: The given function is  y=cot-1[1+sinx+1-sinx1+sinx-1-sinx]                 ……. (1)

Now,

1+sinx+1-sinx1+sinx-1-sinx

=(1+sinx+1-sinx)(1+sinx-1-sinx)1+sinx+1-sinx=(1+sinx)+(1-sinx)+2(1+sinx)-(1-sinx)(1+sinx)-(1-sinx)=2+21-sin2x2sinx=1+cosxsinx=2cos2x22sinxx2cosx2 

Therefore,

1+sinx+1-sinx1+sinx-1-sinx=cotx2 .                                                 …… (2)

So, from the equations (1) and (2) we obtain,

y=cot-1(cotx2)y=x2 

Now, differentiating both sides with respect to x gives dydx=12ddx(x) Hence, dydx=12 .


7.  y=(logx)logx,x>1 .

Ans: The given function is  y=(logx)logx .

First take logarithm both sides of the function.

 logy=logx × log(logx) .

Now, differentiating both sides with respect to  x  gives

1ydydx=ddx[logx×log(logx)]1ydydx=log(logx) ×ddx(logx)+ddx[log(logx)]dydx=y[log(logx)×1x+logx × 1logx × ddx(logx)]dydx=y[1xlog(logx)+1x] 

Hence,  dydx=(logx)logx[1x+log(logx)x] .


8.  y=cos(acosx+bsinx) , for some constants  a  and  b .

Ans: The given function is  y=cos(acosx+bsinx) .

Now, differentiating both sides with respect to  x  by using the chain rule of derivatives gives

dydx=ddxcos(acosx+bsinx)dydx=-sin(acosx+bsinx)× ddx(acosx+bsinx)=-sin(acosx+bsinx)×[a(-sinx)+bcosx] 

Hence,  dydx=(asinx-bcosx) × sin(acosx+bsinx) .


9.y=(sinxcosx)(sinxcosx),π4<x<3π4 .

Ans: The given function is  y=(sinx-cosx)(sinx-cosx).

First take logarithm both sides of the function.

 logy=log[(sinx-cosx)(sinx-cosx)]logy=(sinx-cosx)×log(sinx-cosx) 

Now, differentiating both sides with respect to  x  gives

1ydydx=ddx[(sinx-cosx) × log(sinx-cosx)]1ydydx=log(sinx-cosx)×ddx(sinx-cosx)+(sinx-cosx) × ddxlog(sinx-cosx)1ydydx=log(sinx-cosx)×(cosx+sinx)+(sinx-cosx)×1(sinx-cosx)×ddx(sinx-cosx)dydx=(sinx-cosx)(sinx-cosx)[(cosx+sinx)× log(sinx-cosx)+(cosx+sinx)]  

Hence, the required derivative is 

dydx=(sinx-cosx)(sinx-cosx)(cosx+sinx)[1+log(sinx-cosx)] .


10.y=xx+xa+ax+aa , for some fixed  a>0  and  x>0 .

Ans: The given function is

y=xx+xa+ax+aa .

Now, assume that  xx=u ,

xa=vax=w  and  aa=s 

Therefore, we have  y=u+v+w+s .

So, differentiating both sides with respect to  x  gives

dydx=dudx+dvdx+dwdx+dsdx                                            …… (1)

Also,  u=xx 

 logu=logxxlogu=xlogx 

Then, differentiating both sides with respect to  x  gives 

1ududx=logx.ddx(x)+x.ddx(logx)dudx=u[logx.1+x.1x] 

Thus,  dudx=xx [ logx+1 ] =xx(1+logx)                           ……. (2)

Again,  v=xa 

Then, differentiating both sides with respect to  x  gives

dudx=ddx(xa) 

 dvdx=axa-1                                                                  …… (3)

Also,  w=ax

logw=logaxlogw=xloga 

So, differentiating both sides with respect to  x  gives

1w.dwdx=loga.ddx(x)dwdx=wloga 

dwdx=axloga                                                          ……… (4)

and

 s=aa 

Then differentiating both sides with respect to  x  gives

 dsdx=0 ,                                                                         ……(5)

as  a  is constant, and so  aa  is also a constant.

Now, from the equations (1), (2), (3), (4), and (5) we have

dydx=xx(1+logx)+axa-1+axloga+0 

Hence,dydx=xx(1+logx)+axa-1+axloga .


11.y=xx23+(x3)x2 , for  x>3 .

Ans: The given function is

y=xx2-3+(x-3)x2

Now suppose that  u=xx2-3  and  v=(x-3)x2 

Therefore,  y=u+v .

Now, differentiating both sides with respect to  x  gives

dydx=dudx+dvdx                                                ……. (1)

Also,  u=xx2-3 .

Take logarithm both sides of the equation.

logu=log(xx2-3)logu=(x2-3)logx 

Differentiating both sides with respect to  x  gives

1ududx=logx.ddx(x2-3)+(x2-3).ddx(logx)1ududx=logx.2x+(x2-3).1x 

Hence,  dudx=xx2-3.[x2-3x+2 × logx] .                            …… (2)

Again,  v=(x-3)x2 .

Take logarithm both sides of the equation.

logv=log(x-3)x2logv=x2log(x-3) 

Now, differentiating both sides with respect to  x  gives

1u.dvdx=log(x-3).ddx(x2)+x2.ddx[log(x-3)]1u.dvdx=log(x-3).2x+x2.1x-3.ddx(x-3)dvdx=v.[2xlog(x-3)+x2x-3.1] 

Hence,dvdx=(x-3)x2[x2x-3+2xlog(x-3)]                                    …… (3)

Thus, from the equations (1), (2) and (3) we obtain

dydx=xx2-3[x2-3x+2xlogx]+(x-3)x2[x2x-3+2xlog(x-3)] .


12. Find  dydx  if  y=12(1cost),x=10(tsint),π2<t<π2 .

Ans: The given equations are  y=12(1-cost),                                 …… (1)

and  x=10(t-sint)                                                                    …… (2)

Then differentiating the equations (1) and (2) with respect to  x  gives

dxdt=ddt[10(t-sint)]=10×ddt(t-sint)=10(1-cost)dydt=ddt[12(1-cost)]=12×ddt(1-cost)=12 × [0-(-sint)]=12sint 

Therefore, by dividing  dydt  by  dxdt  we have,

dydx=(dydt)(dxdt)=12sint10(1-cost)=12 × 2sint2 × cost210×2sin2t2

Hence,  dydx=65cott2 .


13. Find  dydx , if  y=sin-1x+sin-11-x2,0<x<1 .

Ans: The given equation is  y=sin-1x+sin-11-x2 .

Differentiating both sides of the equation with respect to  x  gives

dydx=ddx[sin-1x+sin-11-x2]dydx=ddx(sin-1x)+ddx(sin-11-x2) 

dydx=11-x2+11-(1-x2)2× ddx(1-x2)dydx=11-x2-111+x21× 1-x2×2xdydx=11-x2-11-x2 

Hence,  dydx=0 .


14. If  x1+y+y1+x=0, for  1<x<1 ,  prove that  

dydx=1(1+x)2 .

Ans: The given equation is

 x1+y+y1+x=0x1+y=y1+x 

Now, squaring both sides of the equation, gives

 x2(1+y)=y2(1+x)x2+x2y=y2+xy2x2-y2=xy2-x2yx2-y2=xy(y-x)(x+y)(x-y)=xy(y-x)x+y=-xy(1+x)y=-xy=-x(1+x) 

Now, differentiating both sides of the equation with respect to  x  gives

dydx=-(1+x)ddx(x)-xddx(1+x)(1+x)2=-(1+x)-x(1+x)2 

Hence,  dydx=-1(1+x)2.


15. If  (xa)2+(yb)2=c2 , for some constant  c>0 , prove that  [1+(dydx)2]32d2ydx2  is a constant independent of  a  and  b .

Ans: The given equation is  (x-a)2+(y-b)2=c2  .

Differentiating both sides of the equation with respect to  x  gives  ddx[ (x-a)2 ] +ddx [ (y-b)2 ] =ddx(c2)2(x-a).ddx(x-a)+2(y-b).ddx(y-b)=02(x-a).1+2(y-b).dydx=0 

Hence,  dydx=-(x-a)y-b                                                  ..…... (1)

Again, differentiating both sides of the equation with respect to  x  gives

 d2ydx2=ddx[-(x-a)y-b]=-[(y-b).ddx(x-a)-(x-a).ddx(y-b)](y-b)2=-[(y-b)-(x-a).dydx(y-b)2]=-[(y-b)-(x-a).{-(x-a)y-b}(y-b)2]=-[(y-b)2+(x+a)2(y-b)2] 

Therefore,

 [1+(dydx)2d2ydx2]32=[(1+(x-a)2(y-b)2)]32-[(y-a)2+(x-a)2(y-a)3]=[(y-b)2+(x-a)2(y-b)2]32-[(y-a)2+(x-a)2(y-a)3]=[c2(y-b)2]32-c2(y-b)3 

[1+(dydx)2d2ydx2]32=c2(y-b)3c2(y-b)3=-c , is a constant, and is independent of  a  and  b .


16. If  cosy=xcos(a+y) , with  cosa± 1 , prove that  dydx=cos2(a+y)sina .

Ans: The given equation is  cosy=xcos(a+y) .

Then, differentiating both sides of the equation with respect to  x  gives

ddx[cosy]=ddx[xcos(a+y)]-sinydydx=cos(a+y).ddx(x)+x.ddx[cos(a+y)]-sinydydx=cos(a+y)+x.[-sin(a+y)]dydx 

  [ xsin(a+y)-siny ] dydx=cos(a+y)                                  …….. (1)

Since  cosy=xcos(a+y)x=cosycos(a+y) , so from the equation (1) gives

[cosycos(a+y).sin(a+y)-siny]dydx=cos(a+y)[cosy.sin(a+y)-siny.cos(a+y)].dydx=cos2(a+y)sin(a+y-y)dydx=cos2(a+y) 

Hence, it has been proved that  dydx=cos2(a+y)sina .


17. If   x=a(cost+tsint)  and  y=a(sinttcost) , find  d2ydx2 .

Ans: The given equations are

  x=a(cost+tsint)                                            …… (1)

and  y=a(sint-tcost)                                        …… (2)

Then, differentiating both sides of the equation (1) with respect to  x  gives

dxdt=a[-sint+sint.ddx(t)+t.ddt(sint)]=a[-sint+sint+cost]=atcost 

Again, differentiating both sides of the equation (2) with respect to  x  gives

dydt=a.ddt(sint-tcost)a[cost-{cost.ddt(t)+t.ddt(cost)}]a[ cost- { cost-tsint } ]=atsint 

Therefore,

dydx=(dydt)(dxdx)=atsintatcost=tant 

Now, differentiating both sides with respect to  x  gives

d2ydx2=ddx(dydx)=ddx(tant)=sec2t.dtdx=sec2t.1atcost       

Hence,  d2ydx2=sec3(t)at .


18. If  f(x)=|x|3 , show that  f(x)  exists for all real  x   and find it.

Ans:  Remember that, |x|={x,ifx0-x,ifx0} 

Therefore, if  x0,  then   f(x)=|x|3=x3 .

Then,  {f}'(x)=3x2  .

Differentiating both sides with respect to  x  gives

 {{f}'}'(x)=6x .

Now, if x0,thenf(x)=|x|3=(-x3)=x3 .

So,  {f}'(x)=3x2 .

Therefore, differentiating both sides with respect to  x  gives

 {{f}'}'(x)=6x .

Hence, for  f(x)=|x|3,   {{f}'}'(x)  exists for all real values of  x  and is provided as

{{f}'}'(x)={6x,ifx0-6x,ifx0}


19. Using the fact that  sin(A+B)=sinAcosB+cosAsinB  and the differentiation, obtain the sum formula for cosines.

Ans:  The given sum formula is  sin(A+B)=sinAcosB+cosAsinB .

Now, differentiating both sides with respect to  x  gives

ddx[sin(A+B)]=ddx(sinAcosB)+ddx(cosAsinB) 

cos(A+B)×ddx(A+B)=cosB×ddx(sinA)+sinA×ddx(cosB)+sinB×ddx(cosA)+cosA×ddx(sinB)cos(A+B)×ddx(A+B)=cosB×cosAddx+sinA(-sinB)dBdx+sinB(-sinA)×dAdx+cosAcosBdBdxcos(A+B)[dAdx+dBdx]=(cosAcosB-sinAsinB)×[dAdx+dBdx] 

Hence the required sum formula for cosines is  cos(A+B)=cosAcosB-sinAsinB .


20. Does there exist a function which is continuous everywhere but not differentiable at exactly two points?

Ans: Let take the function f(x)=|x|+|x1| 

Observe that, the function  f  is continuous everywhere, but not differentiable at  x=0  and  x=1 .


21.If y=|f(x)g(x)h(x)lmnabc| , prove thatdydx=|f(x)g(x)h(x)lmnabc|  .

Ans:  The given function is  y=|f(x)g(x)h(x) l      m    n a       b    c | 

Evaluate the determinant.

 y=(mc-nb)f(x)-(lc-na)g(x)+(lb-ma)h(x) .

Now, differentiating both sides with respect to  x  gives

 dydx=ddx [ (mc-nb)f(x) ] -ddx [ (lc-na)g(x) ] +ddx [ (lb-ma)h(x) ] =(mc-nb)f(x)-(lc-na)g(x)+(lb-ma)h(x)=|f(x)g(x)h(x)lmnabc| 

Hence,  dydx=|f(x)(x)(x)lmnabc|


22.If y=eacos1x, -1x1 , show that (1x2)d2ydx2xdydxa2y=0 .

Ans: The given equation is

y=eacos-1x .

Then take logarithm both sides of the equation.

logy=acos-1xlogelogy=acos-1x 

Now, differentiating both sides with respect to  x  gives

1ydydx=ax11-x2dydx=-ax1-x2 

Therefore, squaring both the sides of the equation, gives

(dydx)2=a2y21-x2(1-x2)(dydx)2=a2y2(1-x2)(dydx)2=a2y2 

Again, differentiating both sides with respect to  x  gives  (dydx)2ddx(1-x2)+(1-x2)×ddx[(dydx)2]=a2ddx(y2)(dydx)2(-2x)+(1-x2)×2dydx×d2ydx2=a2×2y×dydxxdydx+(1-x2)d2ydx2=a2× y

Hence, it is proved that  (1-x2)d2ydx2-xdydx-a2y=0 


NCERT Solutions for Class 12 Maths Chapter 5

5.1 Introduction

In continuity and differentiability class 12 NCERT solutions, you will be introduced to Continuity and differentiability and its advanced theorem and logarithms. You will learn the advanced form of what you have studied in your previous class. You will explore important concepts of Continuity, differentiability and relations between them. Moreover, you will learn the differentiation of inverse trigonometric functions. Study a new concept called exponential and logarithmic functions and powerful techniques of logarithms by geometrically distinct conditioning through differential calculus. 


5.2 Continuity

In this class 12 continuity and differentiability NCERT solutions, you will learn the rigorous formulation of the intuitive concept of function that varies with no abrupt breaks or jumps. A function is a relationship in which every value of an independent variable is associated with a dependent variable. You will engage with the topic of the algebra of continuous functions. You will study some analogous algebra of uninterrupted functions since the continuity of a function at a point is reasonable to expect results similar to the case of limits. You will learn essential definitions and theorems and how to prove the theorems. 


5.3 Differentiability

In this continuity and differentiability class 12 solutions PDF, you will recall some facts you have already learnt in the previous class, such as the derivative of a real function. You will learn about the list of derivatives of the specific standard function. You will discover three theorems and how to prove them. You will also learn that the result of every differentiable function is continuous. You will learn derivatives of composite functions, derivatives of implicit functions and inverse trigonometric functions. You will learn about the Chain Rule theorem and its functionality.  


5.4 Exponential and Logarithmic Functions

In this continuity and differentiability class 12 solutions, you will explore aspects of different classes of functions like polynomial functions, rational functions and trigonometric functions. You can learn about a new class of related functions and logarithmic functions. This section will emphasize on statements made that are motivational and precise proofs of theorems. You will learn new definitions of exponential function and logarithms. You will find several examples in this section, which will help you grasp and understand exponential functions and logarithmic functions.


5.5 Logarithmic Differentiation

In this continuity and differentiability class 12 NCERT solution, you will learn to differentiate the of functions given in specific form mentioned in the textbook. This section will provide more examples than theory since the topic demands a practical approach and less of a theoretical approach. This section can give you an example of bringing out a particular class of functions provided in certain forms.


5.6 Derivatives of Functions in Parametric Forms

In class 12 maths chapter 5,  you will learn the relation between two variables is neither explicit nor implicit. You will learn how to link a third variable with each of two variables separately by establishing a relation between the first two variables. You will learn why in such a situation; the third variable is called a parameter. You will be given several examples to understand the topic better and grasp the concepts mentioned in this section. 


5.7 Second Order Derivative

In this NCERT Solutions for, class 12 maths chapter 5 solutions you will further learn how to work with the second-order derivative. Again, this section will provide you with more examples than theory as it requires more of a practical approach than a theoretical approach. These examples will help you grasp and hold on to the theorems and concepts you have learnt in previous sections.


Key Learnings from NCERT Solutions for Class 12 Maths chapter 5 

  • A real-valued function is continuous at a point in its domain if the limit of the function at that point equals the value of the function at that point. A function is continuous if it is continuous on the whole of its domain.

  • Continuous Function: A function is called a continuous function on a given interval if it is continuous at every point of the interval.

  • Arithmetic of Continuous Functions: Arithmetic operations (sum, difference, product, and quotient of continuous functions) performed on continuous functions is continuous. For example, if g and f are continuous functions, then

(f + g) (x) = f(x) + g(x) is continuous.

(f - g) (x) = f(x) - g(x) is continuous.

(f . g) (x) = f(x) . g (x) is continuous.

(f / g ) (x) = f(x ) / g(x) (wherever g(x) ≠ 0) is continuous.

  • Differentiable: A function is called to be differentiable if the derivative of the function exists at each point in its domain. If a function f(x) is differentiable at x = a, then f′(a) exists in the domain. Some of the derivative rules to find out the derivatives of a given function are listed below:

i) (f + g)′ = f′ + g′

ii) (f - g)′ = f′ - g′

iii) (fg)′ = f′g + fg′

iv) (f/g)′ = (f′g−fg′)/g2

  • Logarithmic Differentiation is a powerful technique to differentiate functions of the form f(x)[11(x)]rix . Here both f(x) and u(x) need to be positive for this technique to make sense

  • Logarithmic Functions: Logarithmic functions are the inverses of exponential functions. The logarithmic function y = logax is said to be equivalent to the exponential equation x = ay.

  • Rolle’s Theorem: If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b) such that f(a) = f(b), then there exists c in (a, b) such that f ′(c) = 0.

  • Following are some of the standard derivatives (appropriate domains):

ddx(sin1x)=11x2ddx(cos1x)=11x2ddx(tan1x)=11+x2ddx(cot1x)=11+x2ddx(sec1x)=1x1x2ddx(cosec1x)=1x1x2ddx(ex)exddx(logxx)=1x


Overview of Deleted Syllabus for CBSE Class 12 Maths Chapter 5

Chapter

Dropped Topics

Continuity and Differentiability

Examples 22 and 23, and 27

5.8 Mean Value Theorem, Exercise 5.8

Miscellaneous Example 44 (ii)

Questions 19 (Miscellaneous Exercise)

Summary points 5 (derivatives of cot1x,sec1x,cosec1x), 7 and 8



Class 12 Maths Chapter 4: Exercises Breakdown

Exercise

Number of Questions

Exercise 5.1 Solutions

34 Questions  Solutions (10 Short Answers, 24 Long Answers)

Exercise 5.2 Solutions

10 Questions  Solutions (2 Short Answers, 8 Long Answers)

Exercise 5.3 Solutions

15 Questions  Solutions (9 Short Answers, 6 Long Answers)

Exercise 5.4 Solutions

10 Questions  Solutions (5 Short Answers, 5 Long Answers)

Exercise 5.5 Solutions

18 Questions  Solutions (4 Short Answers, 14 Long Answers)

Exercise 5.6 Solutions

11 Questions  Solutions (7 Short Answers, 4 Long Answers)

Exercise 5.7 Solutions

17 Questions  Solutions (10 Short Answers, 7 Long Answers)

Miscellaneous Exercise Solutions

22 Questions Solutions



Conclusion

NCERT Solutions for Class 12 Maths Chapter 5 on Continuity and Differentiability, provided by Vedantu, offer crucial insights into fundamental mathematical concepts. It's important to grasp the idea of continuity, where a function has no sudden jumps or breaks, and differentiability, which deals with the smoothness of a function's graph. Focus on understanding how to identify and analyze points of discontinuity, and how to calculate derivatives using various rules and techniques. In previous year question papers, around 3-5 questions were asked from this chapter. Mastering these concepts lays a strong foundation for advanced mathematical studies and real-world applications. Keep practicing and seeking clarity on challenging topics to excel in this subject.

Other Study Materials of CBSE Class 12 Maths Chapter 5



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability

1. How many topics are there in Chapter 3 of Class 12 Mathematics NCERT textbook?

Class 12 Mathematics Chapter 3 deals with Continuity and Differentiability. It is one of most of the important chapters in Class 12 Mathematics. Before studying the chapter, every student should go through all the topics and subtopics first. That is why we have given the topics and sub-topics of the chapter here - 5.1 Introduction, 5.2 Continuity, 5.2.1 Algebra of continuous functions, 5.3. Differentiability, 5.3.1 Derivatives of composite functions, 5.3.2 Derivatives of implicit functions, 5.3.3 Derivatives of inverse trigonometric functions, 5.4 Exponential and Logarithmic Functions, 5.5. Logarithmic Differentiation, 5.6 Derivatives of Functions in Parametric Forms, 5.7 Second Order Derivative.

2. Give me an overview of all the topics of Class 12 Mathematics Chapter 3.

A. Before you dig into the Class 12 Maths Chapter 3, you must learn a little about all the topics and sub-topics. 


5.1 – Introduction - You will study about the limit, differential, and continuity, their properties, methods to find derivatives by limits.


5.2 – Continuity- You will study about the continuity of a function at a given point i.e. a function is continuous if it is continuous on the whole of its domain, properties of a continuous function, types of discontinuity, intermediate value theorem, Cauchy’s definition, Heine’s definition.


5.3 – Differentiability- You will study about the concept of differentiability – it is the change of quantity with respect to another quantity, standard differentiation, fundamental rules, types of derivatives, the relationship between continuity and differentiability.


5.4 – Exponential and Logarithmic Functions- You will study the concept of exponential and logarithmic functions i.e. differentiation of the exponential function and differentiation of the logarithmic functions.


5.5 – Logarithmic Differentiation- You will study about logarithmic differentiation i.e. differentiation of the function in the form of a logarithm.


5.6 – Derivatives of Functions in Parametric Forms- You will study about derivatives of functions in parametric form.


5.7 – Second Order Derivative- You will study and learn to differentiate the functions of second and third-order.

3. How many exercises are there in Class 12 Maths Chapter 3 NCERT book?

A. Class 1 Maths Chapter 3 has a total of eight exercises and each exercise consists of a bunch of questions of all types. 

  • EXERCISE 5.1 - 34 Questions

  • EXERCISE 5.2 - 10 Questions

  • EXERCISE 5.3 - 15 Questions 

  • EXERCISE 5.4 - 10 Questions

  • EXERCISE 5.5 - 18 Questions

  • EXERCISE 5.6 - 11 Questions

  • EXERCISE 5.7 - 17 Questions

  • Miscellaneous Exercise - 6 Questions

4. Why should I opt for Chapter 3 of Class 12 Mathematics NCERT Solutions?

There are several benefits for opting Chapter 3 of Class 12 Mathematics NCERT Solutions. Class 12 Mathematics Chapter 3 of NCERT Solutions are designed and created by the best subject matter experts from the relevant industry. All the topics covered in all the answers and each answer come with an in-depth explanation of every concept to make them understandable. These NCERT Solutions for Class 12 Chapter 3 Mathematics plays a crucial role in your preparation for various competitive exams apart from the board exams as well such as JEE Main, Olympiad etc. These solutions will be very helpful when you will study at home as per your own convenience.

5. What is the relationship between continuity and differentiability of a function?

  • Differentiability implies continuity: If a function is differentiable at a specific point, it must also be continuous at that same point. fundamentally, a well-defined slope (derivative) at a point suggests the function's output changes smoothly there (continuity).

  • Continuity does not necessarily imply differentiability: A function can be continuous at a point but not differentiable. Imagine a sharp turn or corner in the function's graph. The output changes continuously as you approach the point, but the slope becomes undefined at that exact point.

6. What is the use of continuity and differentiability?

  • Continuity: Ensures functions behave predictably, with no "jumps" or sudden changes. This is crucial in various fields like physics (modeling motion) or economics (analyzing market trends).

  • Differentiability: Allows us to calculate rates of change (slopes) and analyze functions in more detail. It's fundamental in optimization problems (finding minimum/maximum values) and many areas of engineering and science.

7. What is the important formula for continuity?

There's no single formula for continuity. The formal definition involves proving that for any small change in the input (ε), there's a corresponding small enough change in the output (δ) to ensure the function's output stays close. However, understanding the concept of "no jumps" is often sufficient for most purposes.

8. What is the chain rule for continuity and differentiability?

The chain rule is a formula used in calculus to find the derivative of a composite function (a function within another function). It doesn't directly relate to continuity, but ensures that if the individual functions are continuous/differentiable, the composite function most likely inherits those properties as well.

9. What is the use of continuity in real life?

Continuity is used in many real-world scenarios:

  • Motion: Modeling the continuous movement of objects (e.g., a car accelerating)

  • Signal transmission: Ensuring smooth flow of information in electrical circuits or communication networks

  • Economics: Analyzing trends in prices, market behavior, or economic growth over time