Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.1

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.1- FREE PDF Download

In this chapter, we delve into two fundamental concepts in calculus: continuity and differentiability. These concepts are essential for understanding the behavior of functions and their rates of change. Ex 5.1 Class 12 focuses on the basics of continuity, where we learn how to determine if a function is continuous at a point or over an interval. A function is considered continuous if there are no breaks, jumps, or holes in its graph.

toc-symbolTable of Content
toggle-arrow


By mastering the concepts in class 12 maths chapter 5 exercise 5.1, students will build a solid foundation for further studies in differentiability and integral calculus. This class 12 maths exercise 5.1 sets the stage for understanding how functions behave and change, which is crucial for solving more complex mathematical problems in future chapters.


Glance on NCERT Solutions Maths Chapter 5 Exercise 5.1 Class 12 | Vedantu

  • This exercise involves problems where you wll check if a function is continuous at a specific point 'a' by verifying three conditions: the function is defined at 'a', the limit of the function as x approaches 'a' exists, and the limit equals the function's value at 'a'.

  • Practice applying properties of continuous functions. This might involve questions on continuity of functions formed by adding, subtracting, multiplying, or dividing (where applicable) two already known continuous functions.

  • Understanding the concept of limits is essential for checking continuity. You will encounter questions asking for the limit of a function as x approaches a specific value (a). This is written as lim (x->a) f(x).

  • A function f(x) is considered continuous at a point 'a' if these three conditions hold true:

  • f(a) is defined (the function has a value at 'a').

  • lim (x->a) f(x) exists (the limit of the function as x approaches 'a' exists).

  • lim (x->a) f(x) = f(a) (the limit as x approaches 'a' equals the function's value at 'a').


Topics Covered in Class 12 Maths Chapter 5 Exercise 5.1

  • Limits

  • Verifying Continuity

  • Properties of Continuous Functions

  • Algebra of Continuous Functions

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access PDF for Maths NCERT Chapter 5 Continuity and Differentiability Excercise 5.1 Class 12

Exercise 5.1

1. Prove that \[\text{f}\left( \text{x} \right)\text{=5x-3}\] is a continuous function at \[\text{x=0}\], \[\text{x=-3}\] and \[\text{x=5}\].

Ans: The given function is \[\text{f}\left( \text{x} \right)\text{=5x-3}\].

At \[\text{x=0}\], \[\text{f}\left( \text{0} \right)\text{=5 }\!\!\times\!\!\text{ 0-3=-3}\].

Taking limit as $x\to 0$ both sides of the function give

\[\underset{x\to 0}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to 0}{\mathop{\lim }}\,\left( \text{5x-3} \right)\text{=5 }\!\!\times\!\!\text{ 0-3=-3}\]

$\therefore \underset{x\to 0}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{0} \right)$.

Thus, $\text{f}$ satisfies continuity at \[\text{x=0}\].

Again, at \[\text{x=-3,f}\left( \text{-3} \right)\text{=5 }\!\!\times\!\!\text{ }\left( \text{-3} \right)\text{-3=-18}\].

Now, taking limit as $x\to 3$ both sides of the function give

\[\underset{x\to 3}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to 3}{\mathop{\lim }}\,\text{f}\left( \text{5x-3} \right)\text{=5 }\!\!\times\!\!\text{ }\left( \text{-3} \right)\text{-3=-18}\]

\[\therefore \underset{x\to 3}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{-3} \right)\].

Therefore, $\text{f}$ satisfies continuity at \[\text{x=-3}\].

Also, at \[\text{x=5,f}\left( \text{x} \right)\text{=f}\left( \text{5} \right)\text{=5 }\!\!\times\!\!\text{ 5-3=25-3=22}\].

Taking limit as $x\to 5$ both sides of the function give

\[\underset{x\to 5}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to 5}{\mathop{\lim }}\,\left( \text{5x-3} \right)\text{=5 }\!\!\times\!\!\text{ 5-3=22}\]

\[\therefore \underset{x\to 5}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{5} \right)\].

Hence, $\text{f}$ satisfies continuity at \[\text{x=5}\].

 

2. Examine the continuity of the function $\text{f}\left( \text{x} \right)\text{=2}{{\text{x}}^{\text{2}}}\text{-1}$ at \[\text{x=3}\].

Ans: The given function is $\text{f}\left( \text{x} \right)\text{=2}{{\text{x}}^{\text{2}}}\text{-1}$.

Now, at $\text{x=3, f}\left( \text{3} \right)\text{=2 }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}\text{-1=17}$.

Taking limit as $x\to 3$ both sides of the function give

$\underset{x\to 3}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to 3}{\mathop{\lim }}\,\left( \text{2}{{\text{x}}^{\text{2}}}\text{-1} \right)\text{=2 }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}\text{-1=17}$

\[\therefore \underset{x\to 3}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f=}\left( \text{3} \right)\].

Hence, $\text{f}$ satisfies continuity at \[\text{x=3}\].

 

3. Examine the following functions for continuity.

(a) $\text{f}\left( \text{x} \right)\text{=x-5}$

Ans: The given function is $\text{f}\left( \text{x} \right)\text{=x-5}$.

It is assured that for every real number $\text{k}$, $\text{f}$ is defined and its value at $k$ is $\text{k-5}$. Also, it can be noted that 

$\underset{x\to k}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to k}{\mathop{\lim }}\,\text{f}\left( \text{x-5} \right)\text{=k=k-5=f}\left( \text{k} \right)$.

$\therefore \underset{x\to k}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{k} \right)$

Hence, $\text{f}$ satisfies continuity at every real number and so, it is a continuous function.

(b) $\text{f}\left( \text{x} \right)=\frac{\text{1}}{\text{x-5}}\text{,x}\ne \text{5}$

Ans: The given function is

$\text{f}\left( \text{x} \right)\text{=}\frac{\text{1}}{\text{x-5}}$.

Let $\text{k}\ne \text{5}$ is any real number, then taking limit as $\text{x}\to \text{k}$ both sides of the function give

$\underset{x\to k}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to k}{\mathop{\lim }}\,\frac{\text{1}}{\text{x-5}}\text{=}\frac{\text{1}}{\text{k-5}}$

Also, $\text{f(k)=}\frac{\text{1}}{\text{k-5}}$ , since $\text{k}\ne \text{5}$

$\therefore \underset{x\to k}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{k} \right)$

Therefore, $f$ satisfies continuity at every point in the domain of $f$ and so, it is a continuous function.

(c) $\text{f}\left( \text{x} \right)\text{=}\frac{{{\text{x}}^{\text{2}}}\text{-25}}{\text{x+5}}\text{,x}\ne -\text{5}$

Ans: The given function is

\[\text{f}\left( \text{x} \right)\text{=}\frac{{{\text{x}}^{\text{2}}}\text{-25}}{\text{x+5}}\text{, x}\ne \text{5}\]

Now let $\text{c}\ne \text{-5}$ be any real number, then taking limit as $\text{x}\to \text{c}$ on both sides of the function give

\[\underset{x\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to c}{\mathop{\lim }}\,\frac{{{\text{x}}^{\text{2}}}\text{-25}}{\text{x+5}}\text{=}\underset{x\to c}{\mathop{\lim }}\,\frac{\left( \text{x+5} \right)\left( \text{x-5} \right)}{\text{x+5}}\text{=}\underset{x\to c}{\mathop{\lim }}\,\left( \text{x-5} \right)\text{=}\left( \text{c-5} \right)\]

Again, \[\text{f}\left( \text{c} \right)\text{=}\frac{\left( \text{c+5} \right)\left( \text{c-5} \right)}{\text{c+5}}\text{=}\left( \text{c-5} \right)\], since $\text{c}\ne \text{5}$.

Hence, \[\text{f}\] satisfies continuity at every point in the domain of $\text{f}$ and so it is a continuous function.

(d) \[\mathbf{f}\left( \mathbf{x} \right)=\left| \text{x-5} \right|\]

Ans: The given function is $\text{f}\left( \text{x} \right)\text{=}\left| \text{x-5} \right|=\left\{ \begin{align} & \text{5-x, if x}<\text{5} \\ & \text{x-5, if x}\,\ge \text{5} \\ \end{align} \right.$

Note that, $\text{f}$ is defined at all points in the real line. So, let assume $\text{c}$ be a point on a real line. 

Then, we have \[\text{c}<\text{5}\] or \[\text{c}=\text{5}\] or \[\text{c}>\text{5}\].

Now, let's discuss these three cases one by one.

Case (i): $\text{c}<\text{5}$

Then, the function becomes $\text{f}\left( \text{c} \right)\text{=5-c}$.

Now, $\underset{x\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to c}{\mathop{\lim }}\,\left( \text{5-x} \right)\text{=5-c}$.

$\therefore \underset{x\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Therefore, $\text{f}$ is continuous at all real numbers which are less than $5$. 

Case (ii): $\text{c=5}$

Then, \[\text{f}\left( \text{c} \right)\text{=f}\left( \text{5} \right)\text{=}\left( \text{5-5} \right)\text{=0}\].

Now,

$\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{x\to 5}{\mathop{\lim }}\,\left( \text{5-x} \right)\text{=}\left( \text{5-5} \right)\text{=0}$ and

$\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to 5}{\mathop{\lim }}\,\left( \text{x-5} \right)\text{=0}$.

Therefore, we have

$\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Thus, $\text{f}$ satisfies continuity at \[\text{x=5}\], and so $\text{f}$ is continuous at $\text{x=5}$.

Case (iii): $\text{c}>\text{5}$

Then we have, $\text{f}\left( \text{c} \right)\text{=f}\left( \text{5} \right)\text{=c-5}$.

Now,

$\underset{x\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to c}{\mathop{\lim }}\,\left( \text{x-5} \right)\text{=c-5}$.

Therefore,

$\underset{x\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

So, $\text{f}$ is continuous at all real numbers that are greater than $5$.

Thus, $\text{f}$ satisfies continuity at every real number and hence, it is a continuous function.

 

4. Prove that $\text{f}\left( \text{x} \right)={{\text{x}}^{\text{n}}}$  is continuous at $\text{x=n}$, where $\mathbf{n}$ is a positive integer.

Ans: The given function is  $\text{f}\left( \text{x} \right)\text{=}{{\text{x}}^{\text{n}}}$.

We noticed that the function $\text{f}$ is defined at all positive integers $\text{n}$ and also its value at $\text{x=n}$ is ${{\text{n}}^{\text{n}}}$.

Therefore, $\underset{x\to n}{\mathop{\lim }}\,\text{f}\left( \text{n} \right)=\underset{x\to n}{\mathop{\lim }}\,\text{f}\left( {{\text{x}}^{\text{n}}} \right)\text{=}{{\text{n}}^{\text{n}}}$.

So, \[\underset{\text{x}\to \text{n}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{n} \right)\].

Thus, the function $\text{f}\left( \text{x} \right)\mathbf{=}{{\text{x}}^{\text{n}}}$  is continuous at $\text{x=n}$ , where $\text{n}$ is a positive integer.

 

5. Is the function f defined by 

\[\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{x,}\,\,\text{if}\,\text{x}\,\le \text{1} \\ & \text{5,}\,\,\text{if}\,\text{x 1} \\ \end{align} \right.\]

continuous at x=0, x=1 ? At x=2?

Ans: The given function is \[\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{x,}\,\text{ if x}\le \text{1} \\ & \text{5, }\,\text{if x}\,>\text{1} \\ \end{align} \right.\]

It is obvious that the function $\text{f}$ is defined at $\text{x=}0$ and its value at $\text{x=}0$ is $0$.

Now, $\underset{x\to 0}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to 0}{\mathop{\lim }}\,\text{x=0}$.

So, $\underset{x\to 0}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{0} \right)$.

Hence, the function $\text{f}$ satisfies continuity at \[\text{x=0}\].

It can be observed that $\text{f}$ is defined at $\text{x=1}$ and its value at this point is $\text{1}$.

Now, the left-hand limit of the function $\text{f}$ at \[\text{x=1}\] is

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\text{x=1}$.

Also, the right-hand limit of the function $\text{f}$ at \[\text{x=1}\] is

$\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{5} \right)$

Therefore, $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\ne \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$.

Thus, $\text{f}$ is not continuous at \[\text{x=1}\]

It can be found that $\text{f}$ is defined at $\text{x=2}$ and its value at this point is $5$.

That is, \[\underset{x\to 2}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to 2}{\mathop{\lim }}\,\text{f}\left( \text{5} \right)\text{=5}\].

Therefore, \[\underset{x\to 2}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{2} \right)\]

Hence, $\text{f}$ satisfies continuity at \[\text{x=2}\].

 

6. Find all points of discontinuity of the function $\mathbf{f}$, where $\mathbf{f}$ is given by.

\[\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{2x+3,}\,\,\text{if}\,\text{x}\,\le 2 \\ & \text{2x-3,}\,\,\text{if}\,\text{x 2} \\ \end{align} \right.\]

Ans: The given function is \[\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{2x+3, if x}\le \text{2} \\ & \text{2x-3, if x}\,>\,\text{2} \\ \end{align} \right.\]

It can be observed that the function $\text{f}$ is defined at all the points in the real line.

Let consider $\text{c}$ be a point on the real line. Then, three cases may arise.

I.      $\text{c}\,<\,\text{2}$

II.     $\text{c}\,>\,\text{2}$

III.    $\text{c}=\text{2}$

Case (i): When $\text{c}\,<\text{2}$

Then, we have $\underset{x\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to \infty }{\mathop{\lim }}\,\left( \text{2x+3} \right)\text{=2c+3}$.

Therefore,

$\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Hence, $\text{f}$ attains continuity at all points $\text{x}$, where \[\text{x}<\text{2}\].

Case (ii): When $\text{c}>\text{2}$

Then, we have  $\text{f}\left( \text{c} \right)\text{=2c-3}$.

So,

$\underset{\text{x}\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \infty }{\mathop{\lim }}\,\left( \text{2x-3} \right)\text{=2c-3}$.

Therefore, $\underset{\text{x}\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Hence, $\text{f}$ satisfies continuity at all points $\text{x}$ , where \[\text{x}>\text{2}\].

Case(iii): When $\text{c=2}$

Then, the left-hand limit of the function $\text{f}$ at \[\text{x=2}\] is

$\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{2}^{-}}}{\mathop{\lim }}\,\left( \text{2x+3} \right)\text{=2 }\!\!\times\!\!\text{ 2+3=7}$ and 

the right-hand limit of the function $\text{f}$ at \[\text{x=2}\] is,

$\underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to 2+}{\mathop{\lim }}\,\left( \text{2x+3} \right)\text{=2 }\!\!\times\!\!\text{ 2-3=1}$.

Thus, at \[\text{x=2}\], $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\ne \underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$.

So, the function  $\text{f}$ does not satisfy continuity at \[\text{x=2}\].

Hence, \[\text{x=2}\] is the only point of discontinuity of the function $\text{f}\left( \text{x} \right)$.

 

7. Find all points of discontinuity of the function $\mathbf{f}$, where $\mathbf{f}$ is given by

\[\mathbf{f}\left( \mathbf{x} \right)\mathbf{=}\left\{ \begin{align} & \left| \mathbf{x} \right|\mathbf{+3, if x}\le \mathbf{-3} \\ & \mathbf{-2x, if -3}\,<\,\mathbf{x}\,<\,\mathbf{3} \\ & \mathbf{6x+2, if x}\ge \mathbf{3} \\ \end{align} \right.\]

Ans: The given function is \[\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \left| \text{x} \right|\text{+3, if x}\le \text{-3} \\ & \text{-2x, if -3}<\text{x}<\text{3} \\ & \text{6x+2, if x}\ge \text{3} \\ \end{align} \right.\]

Observe that, $\text{f}$ is defined at all the points in the real line.

Now, let assume $\text{c}$ as a point on the real line.

Then five cases may arise. Either $\text{c}<\text{-3}$, or $\text{c}=\text{-3}$ or $\text{-3}<\text{c}<\text{3}$, or $\text{c}=\text{3}$, or $\text{c}>\text{3}$.

Let's discuss the five cases one by one.

Case I: When \[\text{c}<\text{-3}\]

Then, $\text{f}\left( \text{c} \right)\text{=-c+3}$ and

$\underset{\text{x}\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{x\to c}{\mathop{\lim }}\,\left( \text{-x+3} \right)\text{=-c+3}$.

Therefore, $\underset{\text{x}\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Hence, $\text{f}$ satisfies continuity at all points $\text{x}$, where \[\text{x}<\text{-3}\].

Case II: When \[\text{c=-3}\]

Then, $\text{f}\left( \text{-3} \right)\text{=-}\left( \text{-3} \right)\text{+3=6}$.

Also, the left-hand limit

$\underset{\text{x}\to -{{3}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to -{{3}^{-}}}{\mathop{\lim }}\,\left( \text{-x+3} \right)\text{=-}\left( \text{-3} \right)\text{+3=6}$.

and the right-hand limit

$\underset{\text{x}\to -{{3}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{\text{x}\to -{{3}^{+}}}{\mathop{\lim }}\,\text{f}\left( -2\text{x} \right)\text{=-2}\times \left( \text{-3} \right)\text{=6}$.

Therefore, $\underset{\text{x}\to -3}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{-3} \right)$.

Hence, $\text{f}$ satisfies continuity at $\text{x=-3}$.

Case III: When  $\text{-3}<\text{c}<\text{3}$.

Then, $f\left( c \right)=-2c$ and also

 $\underset{x\to c}{\mathop{\lim }}\,\text{f}\left( x \right)\text{=}\underset{x\to c}{\mathop{\lim }}\,\left( -2x \right)=-2c$.

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)\].

Hence, $\text{f}$ satisfies continuity at $\text{x}$, where $\text{-3}<\text{x}<\text{3}$.

Case IV: When \[\text{c=3}\]

Then, the left-hand limit of the function $\text{f}$ at \[\text{x=3}\] is

$\underset{\text{x}\to {{3}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{3}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{-2x} \right)\text{=-2 }\!\!\times\!\!\text{ 3=-6}$ and

the right-hand limit of the function $\text{f}$ at \[\text{x=3}\] is

$\underset{\text{x}\to {{3}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{3}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{6x+2} \right)\text{=6 }\!\!\times\!\!\text{ 3+2=20}$.

Thus, at $\text{x=3}$, $\underset{\text{x}\to {{3}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\ne \underset{\text{x}\to {{3}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$.

Hence, $\text{f}$ does not satisfy continuity at \[\text{x=3}\].

Case V: When $\text{c}>\text{3}$.

 Then $\text{f}\left( \text{c} \right)\text{=6c+2}$ and also

 $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{6x+2} \right)\text{=6c+2}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

So, $\text{f}$ satisfies continuity at all points $\text{x}$, when $\text{x}>\text{3}$.

Thus, \[\text{x=3}\] is the only point of discontinuity of the function $\text{f}$.

 

8. Find all points of discontinuity of the function $\mathbf{f}$, where $\mathbf{f}$ is given by \[\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \frac{\left| \text{x} \right|}{\text{x}}\text{, if x}\ne \text{0} \\ & \text{0, if x=0} \\ \end{align} \right\}\]

Ans: The given function is \[\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \frac{\left| \text{x} \right|}{\text{x}}\text{, if x}\ne \text{0} \\ & \text{0, if x=0} \\ \end{align} \right\}\]

Now, $\text{f}\left( \text{x} \right)$ can be rewritten as $\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \frac{\left| \text{x} \right|}{\text{x}}\text{=}\frac{\text{-x}}{\text{x}}\text{=-1}\,\,\text{if}\,\,\text{x<0} \\ & \text{0, if x=0} \\ & \frac{\left| \text{x} \right|}{\text{x}}\text{=}\frac{\text{x}}{\text{x}}\text{=1 }\,\,\text{if}\,\,\text{ x>0} \\ \end{align} \right\}$

It can be noted that the function $\text{f}$ is defined at all points of the real line.

Now, let assume $\text{c}$ as a point on the real line.

Then three cases may arise, either $\text{c}<\text{0}$, or $\text{c}=\text{0}$, or $\text{c}>\text{0}$.

Let's discuss three cases one by one.

Case I: When $\text{c}<\text{0}$.

Then, $\text{f}\left( \text{c} \right)\text{=-1}$ and

$\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{-1} \right)\text{=-1}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Hence, $\text{f}$ satisfies continuity at all the points $\text{x}$ where \[\text{x}<\text{0}\].

Case II: When \[\text{c=0}\].

Then, the left-hand limit of the function $\text{f}$ at \[\text{x=0}\] is

$\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\left( \text{-1} \right)\text{=-1}$ and

the right-hand limit of the function $\text{f}$ at \[\text{x=0}\] is

$\underset{\text{x}\to 0+}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\left( \text{1} \right)\text{=1}$.

At $\text{x=0}$, $\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\ne \underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$.

Hence, the function $\text{f}$ does not satisfy continuity at \[\text{x=0}\].

Case III: When $\text{c}>\text{0}$.

Then \[\text{f}\left( \text{c} \right)\text{=1}\] and also

\[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{1} \right)\text{=1}\].

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)\].

So, the function $\text{f}$ is continuous at all the points $\text{x}$, for $\text{x}>\text{0}$.

Thus, \[\text{x=0}\] is the only point of discontinuity for the function $\text{f}$.

 

9. Find all points of discontinuity of the function $\mathbf{f}$, where $\mathbf{f}$ is given by $\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \frac{\text{x}}{\left| \text{x} \right|}\text{, if x}<\text{0} \\ & \text{-1, if x}\ge \text{0} \\ \end{align} \right.$

Ans: The given function is $\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \frac{\text{x}}{\left| \text{x} \right|}\text{, if x}\,<\,\text{0} \\ & \text{-1, if x}\ge \text{0} \\ \end{align} \right.$

Now, we know that, if \[\text{x}<\text{0}\], then  \[\left| \text{x} \right|\text{=-x}\].

Therefore, the $\text{f}\left( \text{x} \right)$ can be written as

$\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \frac{x}{\left| \text{x} \right|}=\frac{\text{x}}{\text{-x}}=\text{-1}\,\,\text{if}\text{x}<\text{0} \\ & \text{-1,}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ if x}=\text{0} \\ & \text{-1, }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{x}>\text{0} \\ \end{align} \right\}$

$\Rightarrow \text{f}\left( \text{x} \right)\text{=-1}$ for all positive real numbers.

Now, let's assume $c$ as any real number.

Then three cases may arise, either $\text{c}<\text{0}$, or $\text{c}=\text{0}$, or $\text{c}>\text{0}$.

Let's discuss three cases one by one.

Case I: When \[\text{c}<\text{0}\].

Then, $\text{f}\left( \text{c} \right)\text{=-1}$ and

$\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{-1} \right)\text{=-1}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Hence, $\text{f}$ satisfies continuity at all the points $\text{x}$ where \[\text{x}<\text{0}\].

Case II: When \[\text{c=0}\].

Then, the left-hand limit of the function $\text{f}$ at \[\text{x=0}\] is

$\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\left( \text{-1} \right)\text{=-1}$ and

the right-hand limit of the function $\text{f}$ at \[\text{x=0}\] is

$\underset{\text{x}\to 0+}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\left( \text{-1} \right)\text{=-1}$.

At $\text{x=0}$, $\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$.

Hence, the function $\text{f}$ satisfies continuity at \[\text{x=0}\].

Case III: When $\text{c}>\text{0}$.

Then \[\text{f}\left( \text{c} \right)\text{=-1}\] and also

\[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{-1} \right)\text{=-1}\].

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)\].

So, the function $\text{f}$ is continuous at all the points $\text{x}$, for \[\text{x}>\text{0}\].

Then, we have $\underset{\text{x}\to c}{\mathop{\lim }}\,\text{f(x)}=\underset{\text{x}\to c}{\mathop{\lim }}\,(-1)=-1$  and \[\text{f}\left( \text{c} \right)\text{=-1}=\underset{\text{x}\to c}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\].

Therefore, the function $\text{f}\left( \text{x} \right)$ is a continuous function.

Thus, there does not exist any point of discontinuity.

 

10. Find all points of discontinuity of the function $\mathbf{f}$, where $\mathbf{f}$ is given by $\text{f(x)=}\left\{ \begin{align} & \text{x+1, if x}\ge \text{1} \\ & {{\text{x}}^{\text{2}}}\text{+1, if x}\,<\,\text{1} \\ \end{align} \right.$Ans: The given function is$\text{f(x)=}\left\{ \begin{align} & \text{x+1, if x}\ge \text{1} \\ & {{\text{x}}^{\text{2}}}\text{+1, if x}\,<\,\text{1} \\ \end{align} \right.$

Note that, $\text{f}\left( \text{x} \right)$ is defined at all the points of the real line.

Now, let's assume $c$ as a point on the real line.

Then three cases may arise, either either $\text{c}<\text{1}$, or $\text{c}=\text{1}$, or $\text{c}>\text{1}$.

Let's discuss the three cases one by one.

Case I: When $\text{c}<\text{1}$.

 Then, \[\text{f}\left( \text{c} \right)\text{=}{{\text{c}}^{\text{2}}}\text{+1}\] and also

\[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( {{\text{x}}^{\text{2}}}\text{+1} \right)\text{=}{{\text{c}}^{\text{2}}}\text{+1}\].

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)\].

Hence, \[\text{f}\] satisfies continuity at all the points $\text{x}$, where $\text{x}<\text{1}$.

Case II: When \[\text{c=1}\].

Then, we have \[\text{f}\left( \text{c} \right)\text{=f}\left( \text{1} \right)\text{=1+1=2}\].

Now, the left-hand limit of $\text{f}$ at \[\text{x=1}\] is

\[\underset{\text{x}\to {{\text{1}}^{-}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{1}}^{-}}}{\mathop{\lim }}\,\text{(}{{\text{x}}^{\text{2}}}\text{+1)=}{{\text{1}}^{\text{2}}}\text{+1=2}\] and the right-hand limit of $\text{f}$ at $\text{x=1}$ is, \[\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\left( \text{x+1} \right)\text{=1+1=2}\].

Therefore, \[\underset{\text{x}\to 1}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)\].

Hence, $\text{f}$ satisfies continuity at \[\text{x=1}\].

Case III: When $\text{c}>\text{1}$.

Then, we have  $\text{f}\left( \text{c} \right)\text{=c+1}$ and 

\[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{x+1} \right)\text{=c+1}\].

Therefore,

\[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)\].

So, $\text{f}$ satisfies continuity at all the points $\text{x}$, where $\text{x}>\text{1}$.

Hence, there does not exist any discontinuity points.

 

11. Find all points of discontinuity of the function $\mathbf{f}$, where        \[\mathbf{f}\left( \mathbf{x} \right)=\left\{ \begin{align} & {{\mathbf{x}}^{\mathbf{3}}}-\mathbf{3},\mathbf{if}\,\,\mathbf{x}\le \mathbf{2} \\ & {{\mathbf{x}}^{\mathbf{2}}}+\mathbf{1},\mathbf{if}\,\,\mathbf{x}>\mathbf{2} \\ \end{align} \right.\]

Ans: The given function is $\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & {{\text{x}}^{\text{3}}}\text{-3, if x}\le \text{2} \\ & {{\text{x}}^{\text{2}}}\text{+1, if x}>\text{2} \\ \end{align} \right.$

Observe that, the function $\text{f}$ is defined at all points in the real line.

Now, let assume $\text{c}$ as a point on the real line.

Case I: When $\text{c}<\text{2}$.

Then, we have  $\text{f}\left( \text{c} \right)\text{=}{{\text{c}}^{\text{3}}}\text{-3}$ and also \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{3}}}\text{-3} \right)\text{=}{{\text{c}}^{\text{3}}}\text{-3}\].

Therefore, the function $\text{f}$ attains continuity at all the points $\text{x}$, where $\text{x}<\text{2}$.

Case II: When \[\text{c=2}\].

Then, we have $\text{f}\left( \text{c} \right)\text{=f}\left( \text{2} \right)\text{=}{{\text{2}}^{\text{3}}}\text{-3=5}$.

Now the left-hand limit of the function is

$\underset{\text{x}\to {{2}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{2}^{-}}}{\mathop{\lim }}\,\left( {{\text{x}}^{3}}-3 \right)\text{=}{{\text{2}}^{3}}\text{-3=5}$ and the right-hand limit is

$\underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{+1} \right)\text{=}{{\text{2}}^{\text{2}}}\text{+1=5}$.

Therefore, $\underset{\text{x}\to 2}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{2} \right)$.

Hence, the function $\text{f}$ is continuous at \[\text{x=2}\].

Case III: When $\text{c}>\text{2}$.

Then, $\text{f}\left( \text{c} \right)\text{=}{{\text{c}}^{2}}+1$ and

$\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{+1} \right)\text{=}{{\text{c}}^{\text{2}}}\text{+1}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

So, $\text{f}$ attains continuity at all the points $\text{x}$, where $\text{x}>\text{2}$.

Thus, the function $\text{f}$ is continuous at all the points on the real line.

Hence, $\text{f}$ does not have any point of discontinuity.

 

12. Find all points of discontinuity of the function $\mathbf{f}$, where $\mathbf{f}$ is given by \[\text{f}\left( \text{x} \right)=\left\{ \begin{align} & {{\text{x}}^{\text{10}}}\text{-1, if x}\le \text{1} \\ & {{\text{x}}^{\text{2}}}\text{, if x}\,>\,\text{1} \\ \end{align} \right.\]

Ans: The given function is $\text{f}\left( \text{x} \right)=\left\{ \begin{align} & {{\text{x}}^{\text{10}}}\text{-1, if x}\le \text{1} \\ & {{\text{x}}^{\text{2}}}\text{, if x}\,>\text{1} \\ \end{align} \right.$

Observe that, the function $\text{f}$ is defined at every point of the real line.

Now, let assume $\text{c}$ as a point on the real number line.

Case I: When $\text{c}<\text{1}$.

Then $\text{f}\left( \text{c} \right)\text{=}{{\text{c}}^{\text{10}}}\text{-1}$.

Also,  $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{10}}}\text{-1} \right)\text{=}{{\text{c}}^{\text{10}}}\text{-1}$

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)\].

Hence, the function $\text{f}$ attains continuity at every point $\text{x}$, for $\text{x}<\text{1}$.

Case II: When \[\text{c=1}\].

Then the left-hand limit of the function $\text{f}\left( \text{x} \right)$ at \[\text{x=1}\] is

\[\underset{\text{x}\to {{1}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{\text{x}\to {{1}^{-}}}{\mathop{\lim }}\,\left( {{\text{x}}^{10}}-1 \right)={{1}^{10}}-1=1-1=0\] and

the right-hand limit of the function $\text{f}$ at $\text{x=1}$ is

$\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}} \right)\text{=}{{\text{1}}^{\text{2}}}\text{=1}$.

So, we can notice that, $\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\ne \underset{\text{x}\to {{\text{1}}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$.

Hence, the function $\text{f}$ does not satisfy continuity at \[\text{x=1}\].

Case III: When $\text{c}>\text{1}$.

Then, $\text{f}\left( \text{c} \right)\text{=}{{\text{c}}^{\text{2}}}$.

Also, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}} \right)\text{=}{{\text{c}}^{\text{2}}}\].

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)\].

Thus, the function $\text{f}$ attains continuity at every point $\text{x}$, for $\text{x}>\text{1}$.

Hence, we can conclude that \[\text{x=1}\] is the only point of discontinuity for the function $\text{f}$.

 

13. Is the function defined by $\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{x+5, if x}\le \text{1} \\ & \text{x-5, if x}\,>\,\text{1} \\ \end{align} \right.$ a continuous function? 

Ans: The given function is $\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{x+5, if x}\le \text{1} \\ & \text{x-5, if x}\,>\text{1} \\ \end{align} \right.$

It can be noted that the function $\text{f}$ is defined at every point on the real line. 

Now, let assume $\text{c}$ as a point on the real line.

Case I: When $\text{c}<\text{1}$.

Then, $\text{f}\left( \text{c} \right)\text{=c+5}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{x+5} \right)\text{=c+5}$.

Hence, $\text{f}$ satisfies continuity at every point $\text{x}$, for $\text{x}<\text{1}$.

Case II: When \[\text{c=1}\].

Then, $\text{f}\left( \text{1} \right)\text{=1+5=6}$.

Now, the left-hand limit of the function $\text{f}$ at \[\text{x=1}\] is

$\underset{\text{x}\to {{1}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{1}^{-}}}{\mathop{\lim }}\,\left( \text{x+5} \right)\text{=1+5=6}$ and the right-hand limit of the function at \[\text{x=1}\] is $\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{(x-5)=1-5=4}$.

Thus, it is seen that, $\underset{\text{x}\to {{1}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\ne \underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$.

Hence, $\text{f}$ does not attain continuity at \[\text{x=1}\].

Case III: When $\text{c}>\text{1}$.

Then $\text{f}\left( \text{c} \right)\text{=c-5}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{x-5} \right)\text{=c-5}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Thus, the function $\text{f}$ is continuous at every point \[\text{x}\], for $\text{x}>\text{1}$.

Hence, we can conclude that \[\text{x=1}\] is the only point of discontinuity for the function $\text{f}$.

 

14. Discuss the continuity of the function $\mathbf{f}$, where $\mathbf{f}$ is defined by $\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{3, if 0}\le \text{x}\le \text{1} \\ & \text{4, if 1}\,<\,\text{x}\,<\,\text{3} \\ & \text{5, if 3}\le \text{x}\le \text{10} \\ \end{align} \right.$

Ans: The given function is $\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{3, if 0}\le \text{x}\le \text{1} \\ & \text{4, if 1}\,<\,\text{x}\,<\,\text{3} \\ & \text{5, if 3}\le \text{x}\le \text{10} \\ \end{align} \right.$

Therefore, $\text{f}$ is defined in the interval $\text{ }\!\![\!\!\text{ 0,10 }\!\!]\!\!\text{ }$.

Now let's assume $\text{c}$ as a point in the interval $\text{ }\!\![\!\!\text{ 0,10 }\!\!]\!\!\text{ }$.

Then there may arise five cases.

Case I: When \[\text{0}\le \text{c}<\text{1}\].

Then $\text{f}\left( \text{c} \right)\text{=3}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{3} \right)\text{=3}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Hence, the function $\text{f}$ attains continuity at the interval $\text{ }\!\![\!\!\text{ 0,1 }\!\!]\!\!\text{ }$.

Case II: When \[\text{c=1}\].

Then $\text{f}\left( \text{3} \right)\text{=3}$.

Also, the left-hand-limit of the function at \[\text{x=1}\] is

$\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\left( \text{3} \right)\text{=3}$ and the right-hand-limit of the function at \[\text{x=1}\] is

$\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\left( \text{4} \right)\text{=4}$.

Thus, it is noticed that $\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\ne \underset{\text{x}\to {{\text{1}}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$.

Hence, the function $\text{f}$ does not satisfy continuity at \[\text{x=1}\].

Case III: When \[\text{1}<\text{c}<\text{3}\].

Then $\text{f}\left( \text{c} \right)\text{=4}$.

Also, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{4} \right)\text{=4}\].

Thus, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Hence, the function $\text{f}$ attains continuity at every point in the interval $\text{ }\!\![\!\!\text{ 1,3 }\!\!]\!\!\text{ }$.

Case IV: When \[\text{c=3}\].

Then $\text{f}\left( \text{c} \right)\text{=5}$.

Now, the left-hand-limit of the function $\text{f}$ at \[\text{x=3}\] is

$\underset{\text{x}\to {{\text{3}}^{\text{-}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{\text{3}}^{\text{-}}}}{\mathop{\lim }}\,\left( \text{4} \right)\text{=4}$ and the right-hand-limit of the function $\text{f}$ at \[\text{x=3}\] is

\[\underset{\text{x}\to {{\text{3}}^{\text{+}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{3}^{+}}}{\mathop{\lim }}\,\left( \text{5} \right)\text{=5}\].

Therefore, it is noted that $\underset{\text{x}\to {{\text{3}}^{\text{-}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\ne \underset{\text{x}\to {{\text{3}}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)$ .

Hence, the function $\text{f}$ is not continuous at \[\text{x=3}\].

Case V: When $\text{3}<\text{c}\le \text{10}$.

Then $\text{f}\left( \text{c} \right)\text{=5}$.

Also,  $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{5} \right)\text{=5}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

So, the function $\text{f}$ attains continuity at every point in the interval $\text{ }\!\![\!\!\text{ 3,10 }\!\!]\!\!\text{ }$.

Hence, the function $\text{f}$ is not continuous at \[\text{x=1}\] and \[\text{x=3}\].

 

15. Discuss the continuity of the function $\mathbf{f}$, where $\mathbf{f}$ such that$\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{2x, if x}\,<\,\text{0} \\ & \text{0, }\,\,\,\text{if 0}\le \text{x}\le \text{1} \\ & \text{4x, if x}\,>\,\text{1} \\ \end{align} \right.$

Ans: The given function is 

$\text{f}\left( \text{x} \right)\text{=}\left\{ \begin{align} & \text{2x, if x}<\text{0} \\ & \text{0, if 0}\le \text{x}\le \text{1} \\ & \text{4x, if x}>\text{1} \\ \end{align} \right.$

Now, let consider $\text{c}$ be a point on the real number line. 

Then, five cases may arrive.

Case I: When \[\text{c}<\text{0}\].

Then, $\text{f}\left( \text{c} \right)\text{=2c}$.

Also,  $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( \text{2x} \right)\text{=2c}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{c} \right)$.

Hence, the function $\text{f}$ attains continuity at every point $\text{x}$ whenever \[\text{x}<\text{0}\].

Case II: When \[\text{c = 0}\].

Then, \[\text{f}\left( \text{c} \right)\text{=f}\left( \text{0} \right)\text{=0}\].

Now, the left-hand-limit of the function \[\text{f}\]at \[\text{x = 0}\] is

$\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\left( \text{2x} \right)=0$ and the right-hand limit of the function \[\text{f}\]at \[\text{x = 0}\] is, 

$\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\left( \text{x} \right)\text{=}\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \text{0} \right)\text{=0}$.

Therefore, $\underset{\text{x}\to 0}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=f}\left( \text{0} \right)$.

Thus, the function \[\text{f}\] attains continuity at \[\text{x = 0}\].

Case III: When $\text{0}<\text{c}<\text{1}$ 

Then, $\text{f(x)=0}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{(0)=0}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}$.

Hence, $\text{f}$ attains continuity at every point in the interval $\text{(0,1)}$.

Case IV: When \[\text{c =1}\].

Then, $\text{f(c)=f(1)=0}$.

Now, the left-hand-limit at \[\text{x = 1}\] is

\[\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{(0)=0}\] and the right-hand-limit at \[\text{x = 1}\] is

\[\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{(4x)=4 }\!\!\times\!\!\text{ 1=4}\].

Thus, it is noticed that, \[\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)}\ne \underset{\text{x}\to {{\text{1}}^{+}}}{\mathop{\lim }}\,\text{f(x)}\].

Hence, the function $\text{f}$ is not continuous at \[\text{x = 1}\].

Case V: When \[\text{c}>\text{1}\].

Then, \[\text{f(c)=f(1)=0}\].

Also, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{(4x)=4c}\]

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}$.

So, the function $\text{f}$ attains continuity at every point $\text{x}$, for \[\text{c}>\text{1}\].

Hence, the function $\text{f}$ is discontinuous only at \[\text{x = 1}\].

 

16. Discuss the continuity of the function $\mathbf{f}$, where $\mathbf{f}$ is defined by $\text{f(x)=}\left\{ \begin{align} & \text{-2, if x}\le \text{-1} \\ & \text{2x, if -1}\,<\,\text{x}\le \text{1} \\ & \text{2, }\,\,\,\,\text{if x}\,>\,\text{1} \\ \end{align} \right.$

Ans: The given function is $\text{f(x)=}\left\{ \begin{align} & \text{-2, if x}\le \text{-1} \\ & \text{2x, if -1}<\text{x}\le \text{1} \\ & \text{2, }\,\,\,\,\text{if x}>\text{1} \\ \end{align} \right.$

Note that, $\text{f}$ is defined at every point in the interval $\left[ -1,\infty  \right)$.

Now, let assume $\text{c}$ is a point on the real number line.

Case I: When \[\text{c}<-\text{1}\].

Then, $\text{f(c)=-2}$.

Also, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{(-2)=-2}\].

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}$.

Hence, the function $\text{f}$ attains continuity at every point $\text{x}$ , for \[\text{x}<-\text{1}\].

Case II: When \[\text{c=-1}\].

Then, $\text{f(c)=f(-1)=-2}$.

Now, the left-hand-limit of the function at \[\text{x=-1}\] is

$\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{(-2)=-2}$ and the right-hand-limit at \[\text{x=-1}\] is

$\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{(x)=}\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{=2 }\!\!\times\!\!\text{ (-1)=-2}$.

Therefore, $\underset{\text{x}\to -1}{\mathop{\lim }}\,\text{f(x)=f(-1)}$.

Hence, the function \[\text{f}\] satisfies continuity at \[\text{x=-1}\].

Case III: When $\text{-1}<\text{c}<\text{1}$.

Then, $\text{f(c)=2c}$ and \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{(2x)=2c}\].

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}$.

Hence, the function $\text{f}$ attains continuity at every point in the interval $\text{(-1,1)}$.

Case IV: When \[\text{c=1}\].

Then, $\text{f(c)=f(1)=2 }\!\!\times\!\!\text{ 1=2}$

Now, the left-hand-limit of the function at \[\text{x = 1}\] is 

$\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\lim }}\,\text{(2x)=2 }\!\!\times\!\!\text{ 1=2}$ and the right-hand-limit at \[\text{x = 1}\] is

$\underset{\text{x}\to {{1}^{+}}}{\mathop{\lim }}\,\text{f(x)=}\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\text{2=2}$.

Therefore, $\underset{\text{x}\to 1}{\mathop{\lim }}\,\text{f(x)=f(c)}$.

Thus, the function $\text{f}$ attains continuity at \[\text{x=2}\].

Case V: When \[\text{c}>\text{1}\].

Then \[\text{f(c)=2}\].

Also, $\underset{\text{x}\to 2}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to 2}{\mathop{\lim }}\,\text{(2)=2}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}$.

Hence, the function $\text{f}$ is continuous at every point $\text{x}$, for \[\text{x}>\text{1}\].

Thus, it can be concluded that the function $\text{f}$ is continuous for all the points.

 

17. Find the relationship between $\mathbf{a}$ and $\mathbf{b}$ so that the function $\mathbf{f}$ defined by $\text{f(x)=}\left\{ \begin{align} & \text{ax+1, if x}\le \text{3} \\ & \text{bx+3, if x}\,>\,\text{3} \\ \end{align} \right.$ is continuous at $\text{x=3}$

Ans: The given function is $\text{f(x)=}\left\{ \begin{align} & \text{ax+1, if x}\le \text{3} \\ & \text{bx+3, if x}\,>\text{3} \\ \end{align} \right.$

The function $\text{f}$ will be continuous at \[\text{x = 3}\] if

$\underset{\text{x}\to {{\text{3}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{3}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=f(3)}$,                               ..….. (1)

$\underset{x\to {{\text{3}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{3}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(ax+1)=3a+1}$,

$\underset{\text{x}\to {{3}^{+}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{3}^{+}}}{\mathop{\lim }}\,\text{f(bx+1)=3b+3}$,                    …… (2)

 and

$\text{f(3)=3a+1}$.                                                     …… (3)

Therefore, from the equation (1), (2), and (3) gives

$\Rightarrow \text{3a+1=3b+3}$

$\Rightarrow \text{3a=3b+2}$

$\Rightarrow \text{a=b+}\frac{\text{2}}{\text{3}}$

Hence, the required relationship between $\text{a}$ and $\text{b}$ is given by $\text{a=b+}\frac{\text{2}}{\text{3}}$.

 

18. For what value of $\mathbf{\lambda }$ is the function defined by $\mathbf{f(x)=}\left\{ \begin{align} & \mathbf{\lambda (}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-2x), }\,\,\,\mathbf{if x}\le \mathbf{0} \\ & \mathbf{ 4x+1, if x}>\mathbf{0} \\ \end{align} \right.$ is continuous at $\mathbf{x=0}$. Also discuss the continuity of $\mathbf{f}$ at \[\mathbf{x = 1}\]?

Ans: The given function is\[\text{f(x)=}\left\{ \begin{align} & \text{ }\!\!\lambda\!\!\text{ (}{{\text{x}}^{\text{2}}}\text{-2x), if x}\le \text{0} \\ & \text{ 4x+1, if x}\,>\,\text{0} \\ \end{align} \right.\]

Now the function will be continuous at \[\text{x = 0}\] if

$\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{0}}^{+}}}{\mathop{\lim }}\,\text{f(x)=f(0)}$.

Also, the R.H.L and L.H.L are given by,

$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( 4x+1 \right)=4\left( 0 \right)+1=1$,

$\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{ }\!\!\lambda\!\!\text{ (}{{\text{x}}^{\text{2}}}\text{-2x)}\,\text{=}\,\text{ }\!\!\lambda\!\!\text{ (}{{\text{0}}^{\text{2}}}\text{-2 }\!\!\times\!\!\text{ 0)=0}$.

So, $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)$.

Thus, there does not exist any value of $\text{ }\!\!\lambda\!\!\text{ }$ for which $\text{f}$ is continuous at \[\text{x = 0}\].

Now, at \[\text{x = 1}\],

$\text{f(1)=4x+1=4 }\!\!\times\!\!\text{ 1+1=5}$ and

$\underset{\text{x}\to 1}{\mathop{\lim }}\,\text{(4x+1)=4 }\!\!\times\!\!\text{ 1+1=5}$.

Therefore, $\underset{\text{x}\to 1}{\mathop{\lim }}\,\text{f(x)=f(1)}$.

Hence, the function $\text{f}$ is continuous at \[\text{x = 1}\], for all values of $\text{ }\!\!\lambda\!\!\text{ }$.

 

19. Show that the function defined by $\text{g(x)=x- }\!\![\!\!\text{ x }\!\!]\!\!\text{ }$ is discontinuous at all integral point, here $\mathbf{[x]}$ denotes the greatest integer value of $\mathbf{x}$ that are less than or equal to $\mathbf{x}$. 

Ans: The given function is $\text{g(x)=x-}\left[ \text{x} \right]$.

Note that the function is defined at every integral point.

Now, let assume that $\text{n}$ is an integer.

Then, $\text{g(n)=n-}\left[ \text{n} \right]\text{=n-n=0}$.

Now taking left-hand-limit as $\text{x}\to \text{n}$ to the function $\text{g}$ gives 

$\underset{\text{x}\to {{\text{n}}^{\text{-}}}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to {{\text{n}}^{\text{-}}}}{\mathop{\lim }}\,\left[ \text{x-}\left[ \text{x} \right] \right]\text{=}\underset{\text{x}\to {{\text{n}}^{\text{-}}}}{\mathop{\lim }}\,\left( \text{x} \right)\text{-}\underset{\text{x}\to \text{n-}}{\mathop{\lim }}\,\left[ \text{x} \right]\text{=n-}\left( \text{n-1} \right)\text{=1}$.

Again, the right-hand-limit on the function at $\text{x=n}$ is

\[\underset{\text{x}\to {{\text{n}}^{+}}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to {{\text{n}}^{+}}}{\mathop{\lim }}\,\left[ \text{x-}\left[ \text{x} \right] \right]\text{=}\underset{\text{x}\to {{\text{n}}^{\text{+}}}}{\mathop{\lim }}\,\left( \text{x} \right)\text{-}\underset{\text{x}\to {{\text{n}}^{+}}}{\mathop{\lim }}\,\left[ \text{x} \right]\text{=n-n=0}\].

Note that, $\underset{\text{x}\to {{\text{n}}^{\text{-}}}}{\mathop{\lim }}\,\text{g(x)}\ne \underset{\text{x}\to {{\text{n}}^{+}}}{\mathop{\lim }}\,\text{g(x)}$.

Thus, the function $\text{f}$ is cannot be continuous at $\text{x=n,}$ 

Hence, the function $\text{g}$ is not continuous at any integral point. 

 

20. Is the function defined by $\text{f(x)=}{{\text{x}}^{\text{2}}}\text{-sinx+5}$ is continuous at \[\text{x= }\!\!\pi\!\!\text{ }\]

Ans: The given function is $\text{f(x)=}{{\text{x}}^{\text{2}}}\text{-sinx+5}$.

Now, at \[\text{x= }\!\!\pi\!\!\text{ }\], 

\[\text{f(x)}\,\text{=}\,\text{f( }\!\!\pi\!\!\text{ )}\,\text{=}\,{{\text{ }\!\!\pi\!\!\text{ }}^{\text{2}}}\text{-sin }\!\!\pi\!\!\text{ }\,\text{+}\,\text{5}\,\text{=}\,{{\text{ }\!\!\pi\!\!\text{ }}^{\text{2}}}\text{-0+5}\,\text{=}\,{{\text{ }\!\!\pi\!\!\text{ }}^{\text{2}}}\text{+5}\]

Taking limit as $\text{x}\to \text{ }\!\!\pi\!\!\text{ }$ on the function $\text{f}\left( \text{x} \right)$ gives

\[\underset{\text{x}\to \text{ }\!\!\pi\!\!\text{ }}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \text{ }\!\!\pi\!\!\text{ }}{\mathop{\lim }}\,\text{(}{{\text{x}}^{\text{2}}}\text{-sinx+5)}\].

Now substitute $\text{x= }\!\!\pi\!\!\text{ +h}$ into the function $\text{f}\left( \text{x} \right)$.

When $\text{x}\to \text{ }\!\!\pi\!\!\text{ }$, then $\text{h}\to 0$.

Therefore, 

\[\underset{\text{x}\to \text{ }\!\!\pi\!\!\text{ }}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \text{ }\!\!\pi\!\!\text{ }}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{-sinx} \right)\text{+5}\].

\[=\underset{\text{h}\to 0}{\mathop{\lim }}\,\left[ \left( \text{ }\!\!\pi\!\!\text{ +}{{\text{h}}^{\text{2}}} \right)\text{-sin}\left( \text{ }\!\!\pi\!\!\text{ +h} \right)\text{+5} \right]\]

\[=\underset{\text{h}\to 0}{\mathop{\lim }}\,{{\left( \text{ }\!\!\pi\!\!\text{ +h} \right)}^{\text{2}}}-\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{sin}\left( \text{ }\!\!\pi\!\!\text{ +h} \right)\text{+}\underset{\text{h}\to 0}{\mathop{\lim }}\,5\]

\[\text{=}{{\left( \text{ }\!\!\pi\!\!\text{ +0} \right)}^{\text{2}}}-\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{ }\!\![\!\!\text{ sin }\!\!\pi\!\!\text{ }\cdot \text{cosh+cos }\!\!\pi\!\!\text{ }\cdot \text{sinh }\!\!]\!\!\text{ +5}\]

\[\text{=}{{\text{ }\!\!\pi\!\!\text{ }}^{\text{2}}}-\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{sin }\!\!\pi\!\!\text{ }\cdot \text{cosh} \right)\text{-}\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{cos }\!\!\pi\!\!\text{ }\cdot \text{sinh} \right)\text{+5}\]

\[\text{=}{{\text{ }\!\!\pi\!\!\text{ }}^{\text{2}}}-\text{sin }\!\!\pi\!\!\text{ }\cdot \text{cos0}-\text{cos }\!\!\pi\!\!\text{ }\cdot \text{sin0+5}\]

\[\text{=}{{\text{ }\!\!\pi\!\!\text{ }}^{\text{2}}}-\text{0 }\!\!\times\!\!\text{ 1}-\text{(}-\text{1) }\!\!\times\!\!\text{ 0+5=}{{\text{ }\!\!\pi\!\!\text{ }}^{\text{2}}}\text{+5}\].

So, \[\underset{\text{x}\to \text{x}}{\mathop{\lim }}\,\text{f(x)=f( }\!\!\pi\!\!\text{ )}\].

Hence, it is concluded that the function $\text{f}$ is continuous at $\text{x=n}$.

 

21. Discuss the continuity of the following functions:

(a) \[\mathbf{f(x)}=\mathbf{sinx+cosx}\]  (b) \[\mathbf{f(x)=sinx-cosx}\]  (c) \[\mathbf{f(x)=sinx\times cosx}\].

Ans: It is known that if two functions $\text{g}$ and $\text{h}$ are continuous, then $\text{g+h, g-h}$and $\text{g,h}$ are also continuous.

So, let us assume that, $\text{g(x)=sinx}$ and $\text{h(x)=cosx}$ are two continuous functions.

Now, as $\text{g(x)=sinx}$ is defined for every real number, so let $\text{c}$ be a real number. Substitute $\text{x=c+h}$ into the function $\text{g}$.

When $\text{x}\to \text{c}$, then $\text{h}\to 0$.

So, \[\text{g(c)=sinc}\].

Also,

\[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{sinx}\]

\[=\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{sin}\left( \text{c+h} \right)\]

\[=\underset{\text{h}\to 0}{\mathop{\lim }}\,\left[ \text{sinc}\cdot \text{cosh+cosc}\cdot \text{sinh} \right]\]

\[=\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{sinc}\cdot \text{cosh} \right)\text{+}\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{cosc}\cdot \text{sinh} \right)\]

\[\text{=sinc}\cdot \text{cos0+cosc}\cdot \text{sin0}\]

\[\text{=sinc+0}\]

 \[\text{=sinc}\]

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=g(c)}\].

Hence, the function $\text{g}$ is continuous.

Again, let us assume that $\text{h(x)=cosx}$.

Note that, the function $\text{h(x)=cosx}$ is defined for every real number.

Now, let $\text{c}$ be a real number. 

Substitute $\text{x=c+h}$ into the function.

When $\text{x}\to \text{c}$, then \[\text{h}\to 0\].

So, $\text{h(c)=cosc}$ and

$\begin{align} & \underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{h(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{cosx} \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{cos(c+h)} \\ & \text{=}\underset{\text{h}\to 0}{\mathop{\lim }}\,\left[ \text{cosc}\cdot \text{cosh-sinc}\cdot \text{sinh} \right] \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{cosc}\cdot \text{cosh} \right)\text{-}\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{sinc}\cdot \text{sinh} \right) \\ & \text{=cosc}\cdot \text{cos0}-\text{sinc}\cdot \text{sin0} \\ & \text{=cosc }\!\!\times\!\!\text{ 1}-\text{sinc }\!\!\times\!\!\text{ 0} \\ & \text{=cosc} \\ \end{align}$

Therefore, $\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{h(x)=h(c)}$.

Thus, the function $\text{h}$ is continuous.

Hence, we conclude that all the following functions are continuous.

(a) \[\text{f(x)=g(x)+h(x)=sinx+cosx}\].

(b) \[\text{f(x)=g(x)-h(x)=sinx-cosx}\].

(c) \[\text{f(x)=g(x) }\!\!\times\!\!\text{ h(x)=sinx }\!\!\times\!\!\text{ cosx}\].

 

22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Ans: We know that if two functions say $\text{g}$ and $\text{h}$ are continuous, then

        i.  $\frac{\text{h(x)}}{\text{g(x)}}\text{,g(x)}\ne \text{0}$ is continuous.

      ii.  \[\frac{\text{1}}{\text{g(x)}}\text{,g(x)}\ne \text{0}\] is continuous.

    iii.  \[\frac{\text{1}}{\text{h(x)}}\text{,h(x)}\ne \text{0}\] is continuous.

It can be observed that the function $\text{g(x)=sinx}$ is defined for all real numbers.

Now, let's consider $\text{c}$ to be a real number and substitute $\text{x=c+h}$ into the function $\text{g}$.

When, $\text{x}\to \text{c}$, then \[\text{h}\to 0\].

So, \[\text{g(c)=sinc}\] and

\[\begin{align} & \underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{sinx} \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{sin}\left( \text{c+h} \right) \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left[ \text{sinc}\cdot \text{cosh+cosc}\cdot \text{sinh} \right] \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{sinc}\cdot \text{cosh} \right)\text{+}\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{cosc}\cdot \text{sinh} \right) \\ & \text{=sinc}\cdot \text{cos0+cosc}\cdot \text{sin0} \\ & \text{=sinc+0} \\ & \text{=sinc} \\ \end{align}\]

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=g(c)}\].

Thus, the function $\text{g}\left( \text{x} \right)\text{=sinx}$ is continuous.

Again, let $\text{h(x)=cosx}$.

It can be noted that $\text{h(x)=cosx}$ is defined for all real numbers.

Now, let's consider $\text{c}$ to be a real number and substitute $\text{x=c+h}$ into the function $\text{h}$.

Then, \[\text{h(c)=cosc}\] and

\[\begin{align} & \underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{h(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{cosx} \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{cos}\left( \text{c+h} \right) \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left[ \text{cosc}\cdot \text{cosh-sinc}\cdot \text{sinh} \right] \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{cosc}\cdot \text{cosh} \right)\text{-}\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{sinc}\cdot \text{sinh} \right) \\ & \text{=cosc}\cdot \text{cos0}-\text{sinc}\cdot \text{sin0} \\ & \text{=cosc }\!\!\times\!\!\text{ 1}-\text{sinc }\!\!\times\!\!\text{ 0} \\ & \text{=cosc} \\ \end{align}\]

Therefore, \[\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{h(x)=h(c)}\].

Thus, the function $\text{h(x)=cosx}$ is continuous.

Now note that,

$\text{cosec x=}\frac{\text{1}}{\text{sinx}}\text{,}$ and $\text{sinx}\ne \text{0}$ is a continuous function.

Thus, the cosecant function is continuous except at $\text{x=n }\!\!\pi\!\!\text{ ,}\,\,\text{n}\in \mathbb{Z}$.

Again, $\text{secx=}\frac{\text{1}}{\text{cosx}}\text{,}\,\,\text{cosx}\ne \text{0}$ is continuous.

$\Rightarrow \text{secx,}\,\,\text{x}\ne \text{(2n+1)}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{, }\,\text{n}\in \mathbb{Z}$  is a continuous function.

Thus, secant function is also continuous except at $\text{x=(2n+1)}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{, }\,\text{n}\in \mathbb{Z}$.

And the cotangent function is

$\text{cotx=}\frac{\text{cosx}}{\text{sinx}}$ and where $\text{sinx}\ne 0$ is a continuous function.

$\Rightarrow \text{cotx,}\,\,\text{x}\ne \text{n }\!\!\pi\!\!\text{ ,}\,\,\text{n}\in \mathbb{Z}$ is a continuous function.

Hence, the cotangent function is continuous except at $\text{x=n }\!\!\pi\!\!\text{ ,}\,\,\text{n}\in \mathbb{Z}$.

 

23. Find all points of discontinuity of function $\mathbf{f}$ defined by $\text{f(x)=}\left\{ \begin{align} & \frac{\text{sinx}}{\text{x}}\text{, if x}\,<\,\text{0} \\ & \text{x+1, }\,\,\text{if x}\ge \text{0} \\ \end{align} \right.$

Ans: The given function is  $\text{f(x)=}\left\{ \begin{align} & \frac{\text{sinx}}{\text{x}}\text{, if x}\,<\,\text{0} \\ & \text{x+1, }\,\text{if x}\ge \text{0} \\ \end{align} \right.$

Note that, the function $\text{f}$ is defined at every point on the real number line.

Now, let's consider $\text{c}$ be a real number.

Then there may arise three cases, either $\text{c}<\text{0}$, or $\text{c}>\text{0}$, or $\text{c}=\text{0}$.

Let us discuss one after another.

Case I: When $\text{c}<\text{0}$.

Then, $\text{f(c)=}\frac{\text{sinc}}{\text{c}}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)}\left( \frac{\text{sinx}}{\text{x}} \right)\text{=}\frac{\text{sinc}}{\text{c}}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}$.

Hence, the function $\text{f}$ is continuous at every point $\text{x}$, for \[\text{x0}\].

Case II: When $\text{c}>\text{0}$.

Then $\text{f(c)=c+1}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{(x+1)=c+1}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}$.

Hence, the function $\text{f}$ is continuous at every point, where \[\text{x0}\].

Case III: When \[\text{c = 0}\].

Then $\text{f(c)=f(0)=0+1=1}$.

Now, the left-hand-limit of the function $\text{f}$ at $\text{x=0}$ is

$\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\frac{\text{sinx}}{\text{x}}\text{=1}$ and the right-hand-limit is

\[\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{(x+1)=1}\]

Therefore, \[\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=f(0)}\].

So, the function $\text{f}$ is continuous at \[\text{x = 0}\].

Thus, the function $\text{f}$ is continuous at every real point.

Hence, the function $\text{f}$ does not have any point of discontinuity.

 

24. Determine if function $\mathbf{f}$ defined by $\text{f(x)=}\left\{ \begin{align} & {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}}\text{, if x}\ne \text{0} \\ & \text{0, if x=0} \\ \end{align} \right\}$

Ans: The given function is $\text{f(x)=}\left\{ \begin{align} & {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}}\text{, if x}\ne \text{0} \\ & \text{0, if x=0} \\ \end{align} \right\}$

We can observe that the function $\text{f}$ is defined at every point on the real number line.

Now, let's consider $\text{c}$ to be a real number.

Then, there may arise two cases, either $\text{c}\ne \text{0}$ or $\text{c=0}$.

Let us discuss the cases one after another.

Case I: When \[\text{c}\ne 0\].

Then $\text{f(c)=}{{\text{c}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{c}}$.

Also,

\[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}} \right)=\left( \underset{\text{x}\to \text{c}}{\mathop{\lim }}\,{{\text{x}}^{\text{2}}} \right)\left( \underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{sin}\frac{\text{1}}{\text{x}} \right)={{\text{c}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{c}}\].

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}\].

Hence, the function $\text{f}$ is continuous at every point \[\text{x}\ne 0\].

Case II: When \[\text{c = 0}\].

Then $\text{f(0)=0}$ and also

$\underset{\text{x}\to {{0}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}} \right)\text{=}\underset{\text{x}\to 0}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}} \right)$

Now, we know that,

 $\text{-1}\le \text{sin}\frac{\text{1}}{\text{x}}\le 1,\text{ x}\ne 0$.

$\begin{align} & \Rightarrow \text{-}{{\text{x}}^{\text{2}}}\le \text{sin}\frac{\text{1}}{\text{x}}\le {{\text{x}}^{\text{2}}} \\ & \Rightarrow \underset{\text{x}\to 0}{\mathop{\lim }}\,\text{(-}{{\text{x}}^{\text{2}}}\text{)}\le \underset{\text{x}\to 0}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}} \right)\le 0 \\ & \Rightarrow 0\le \underset{\text{x}\to 0}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}} \right)\le 0 \\ & \Rightarrow \underset{\text{x}\to 0}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}} \right)=0 \\ \end{align}$

Therefore, $\underset{\text{x}\to {{0}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=0}$.

Similarly, we have, 

$\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}} \right)=\underset{\text{x}\to 0}{\mathop{\lim }}\,\left( {{\text{x}}^{\text{2}}}\text{sin}\frac{\text{1}}{\text{x}} \right)\text{=0}$

Therefore, $\underset{\text{x}\to {{0}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=f(0)=}\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{f(x)}$.

Thus, the function $\text{f}$ is continuous at the point \[\text{x = 0}\].

So, the function $\text{f}$ is continuous at all real points.

Hence, the function $\text{f}$ is continuous.

 

25. Determine whether the following function $\mathbf{f}$ is continuous.

$\mathbf{f}$ such that $\text{f(x)=}\left\{ \begin{align} & \text{sinx-cosx, if x}\ne \text{0} \\ & \text{ 1 if x=0} \\ \end{align} \right.$

Ans: The given function is $\text{f(x)=}\left\{ \begin{align} & \text{sinx-cosx, if x}\ne \text{0} \\ & \text{ 1 if x=0} \\ \end{align} \right.$

It can be observed that the function $\text{f}$ is defined at every point on the real number line.

Now, let's consider $\text{c}$ to be a real number.

Then, there may arise two cases, either $\text{c}\ne \text{0}$ or $\text{c=0}$.

Let us discuss the cases one after another.

Case I: When $\text{c}\ne 0$.

Then, $\text{f(c)=sinc-cosc}$.

Also, \[\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{f(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{(sinx-cosx)=sinc-cosc}\].

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{f(x)=f(c)}\].

Hence, the function $\text{f}$ is continuous at every point $\text{x}$ for $\text{x}\ne 0$.

Case II: When \[\text{c =0}\].

Then, $\text{f(0)=-1}$.

Now the left-hand-limit of the function $\text{f}$ at $\text{x=0}$ is

\[\underset{\text{x}\to {{0}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)}=\underset{\text{x}\to {{0}^{\text{-}}}}{\mathop{\lim }}\,\text{(sinx-cosx)=sin0-cos0=0-1=-1}\] and the right-hand-limit is 

\[\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{(sinx-cosx)=sin0-cos0=0-1=-1}\].

Therefore, \[\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{f(x)=f(0)}\].

So, the function $\text{f}$ is continuous at \[\text{x = 0}\].

Thus, the function $\text{f}$ is continuous at all real points.

Hence, the function $\text{f}$ is continuous.

 

26. Calculate the values of \[\mathbf{k}\] for which the function $\mathbf{f}$ attains continuity at the given points.

$\text{f(x)}\mathbf{=}\left\{ \begin{align} & \frac{\text{kcosx}}{\text{ }\!\!\pi\!\!\text{ -2x}}\text{, if x}\ne \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \\ & \text{ 3, if x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \\ \end{align} \right.$

at $\mathbf{x}=\frac{\mathbf{\pi }}{\mathbf{2}}$.

Ans: The given function is $\text{f(x)}\mathbf{=}\left\{ \begin{align} & \frac{\text{kcosx}}{\text{ }\!\!\pi\!\!\text{ -2x}}\text{, if x}\ne \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \\ & \text{ 3, if x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \\ \end{align} \right.$

Observe that, $\text{f}$ is defined and continuous at $\text{x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$ , since the value of the $\text{f}$ at $\text{x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$ is equal with the limiting value of $\text{f}$ at $\text{x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$.

Since, $\text{f}$ is defined at $\text{x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$ and $\text{f}\left( \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \right)\text{=3}$, so

$\underset{\text{x}\to \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\mathop{\lim }}\,\text{f(x)}=\underset{\text{x}\to \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\mathop{\lim }}\,\frac{\text{kcosx}}{\text{ }\!\!\pi\!\!\text{ -2x}}$.

Substitute $\text{x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{+h}$ into the function $\text{f}\left( \text{x} \right)$.

So, we have, \[\text{x}\to \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\Rightarrow \text{h}\to 0\].

Then,

$\underset{\text{x}\to \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\mathop{\lim }}\,\frac{\text{kcosx}}{\text{ }\!\!\pi\!\!\text{ -2x}}=\underset{\text{h}\to 0}{\mathop{\lim }}\,\frac{\text{kcos}\left( \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{+h} \right)}{\text{ }\!\!\pi\!\!\text{ -2}\left( \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{+h} \right)}$.

 $\Rightarrow \text{k}\underset{\text{h}\to 0}{\mathop{\lim }}\,\frac{\text{-sinh}}{\text{-2h}}\text{=}\frac{\text{k}}{\text{2}}\underset{\text{h}\to 0}{\mathop{\lim }}\,\frac{\text{sinh}}{\text{h}}\text{=}\frac{\text{k}}{\text{2}}\text{.1}=\frac{\text{k}}{\text{2}}$

Therefore, $\underset{\text{x}\to \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\mathop{\lim }}\,\text{f(x)=f}\left( \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \right)$

 $\begin{align} & \Rightarrow \frac{\text{k}}{\text{2}}\text{=3} \\ & \Rightarrow \text{k=6} \\ \end{align}$

Hence, the value of $\text{k}$ is $\text{6}$ for which the function $\text{f}$ is continuous.

 

27. Find the values of $\mathbf{k}$ so that the function $\mathbf{f}$ satisfies continuity at the given points. 

$\text{f(x)=}\left\{ \begin{align} & \text{k}{{\text{x}}^{\text{2}}}\text{, if x}\le \text{2} \\ & \text{3, if x}\,>\,\text{2} \\ \end{align} \right.$ at $\mathbf{x=2}$

Ans: The given function is $\text{f(x)=}\left\{ \begin{align} & \text{k}{{\text{x}}^{\text{2}}}\text{, if x}\le \text{2} \\ & \text{3, if x}>\text{2} \\ \end{align} \right.$

It is known that, $\text{f}$ is continuous at \[\text{x = 2}\] only if $\text{f}$ is defined at $\text{x=2}$ and if the value of $\text{f}$ at \[\text{x = 2}\] is equal with the limiting value of $\text{f}$ at \[\text{x = 2}\].

So, at $x=2$,

Now, the left-hand-limit and right-hand-limit of the function $\text{f}\left( \text{x} \right)$ at $\text{x}=\text{2}$respectively are,

$\underset{\text{x}\to {{2}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{\text{x}\to {{2}^{-}}}{\mathop{\lim }}\,\left( \text{k}{{\text{x}}^{\text{2}}} \right)=\text{k}{{\left( \text{2} \right)}^{\text{2}}}=\text{4k}$, 

and $\underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\left( 3 \right)=3$.

Since, the function is continuous at $\text{x}=\text{2}$, so

\[\begin{align} & \underset{\text{x}\to {{2}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\text{f(x)=f(2)} \\ & \Rightarrow \text{4k=3} \\ & \Rightarrow \text{k=}\frac{\text{3}}{\text{4}} \\ \end{align}\]

Hence, the value of $\text{k}$ is $\frac{\text{3}}{\text{4}}$ for which the function $\text{f}$ is continuous.

 

28. Find the values of $\mathbf{k}$ so that the function $\mathbf{f}$ attains continuity at the given point.

$\text{f(x)=}\left\{ \begin{align} & \text{kx+1, if x}\le \mathbf{\pi } \\ & \mathbf{cosx}\text{, if x}\,>\,\mathbf{\pi } \\ \end{align} \right.$ at $\mathbf{x=\pi }$

Ans: The given function is $\text{f(x)=}\left\{ \begin{align} & \text{kx+1, if x}\le \text{ }\!\!\pi\!\!\text{ } \\ & \text{cosx, if x}\,>\,\text{ }\!\!\pi\!\!\text{ } \\ \end{align} \right.$

It is known that, $\text{f}$ is continuous at $\text{x= }\!\!\pi\!\!\text{ }$ only if the value of $\text{f}$ at $\text{x= }\!\!\pi\!\!\text{ }$ is equal with the limiting value of $\text{f}$ at $\text{x= }\!\!\pi\!\!\text{ }$.

It is provided that the function $\text{f}$ is defined at $\text{x= }\!\!\pi\!\!\text{ }$.

Also, $\text{f( }\!\!\pi\!\!\text{ )=k }\!\!\pi\!\!\text{ +1}$.

Now, the left-hand-limit,

\[\underset{\text{x}\to {{\text{ }\!\!\pi\!\!\text{ }}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{\text{ }\!\!\pi\!\!\text{ }}^{-}}}{\mathop{\lim }}\,\text{(kx+1)=k }\!\!\pi\!\!\text{ +1}\].

Also, the right-hand-limit,

\[\underset{\text{x}\to {{\text{ }\!\!\pi\!\!\text{ }}^{\text{+}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)\text{=}\underset{\text{x}\to {{\text{ }\!\!\pi\!\!\text{ }}^{\text{+}}}}{\mathop{\lim }}\,\text{cosx=cos }\!\!\pi\!\!\text{ =-1}\].

Since, the function $\text{f}$ is continuous, so

\[\underset{\text{x}\to {{\text{ }\!\!\pi\!\!\text{ }}^{-}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{\text{x}\to {{\text{ }\!\!\pi\!\!\text{ }}^{\text{+}}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\text{f}\left( \text{ }\!\!\pi\!\!\text{ } \right)\]

\[\begin{align} & \Rightarrow \text{k }\!\!\pi\!\!\text{ +1=-1} \\ & \Rightarrow \text{k }\!\!\pi\!\!\text{ =-2} \\ & \Rightarrow \text{k=-}\frac{\text{2}}{\text{ }\!\!\pi\!\!\text{ }} \\ \end{align}\]

Hence, the value of $\text{k}$ is $\text{-}\frac{\text{2}}{\text{ }\!\!\pi\!\!\text{ }}$ for which the function $\text{f}$ is continuous at $\text{x= }\!\!\pi\!\!\text{ }$. 

 

29. Find the values of $\mathbf{k}$ so that the function $\mathbf{f}$ attains continuity at the given point.

$\text{f(x)=}\left\{ \begin{align} & \text{kx+1, if x}\le \text{5} \\ & \text{3x-5, }\,\text{if x}\,>\,\text{5} \\ \end{align} \right.$ at \[\mathbf{x = 5}\]

Ans: The given function is  $\text{f(x)=}\left\{ \begin{align} & \text{kx+1, if x}\le \text{5} \\ & \text{3x-5, }\,\,\text{if x}>\text{5} \\ \end{align} \right.$

Recall that, the function $\text{f}$ is continuous at \[\text{x = 5}\] only if the value of $\text{f}$ at \[\text{x = 5}\] is equal to the limiting value of $\text{f}$ at \[\text{x = 5}\].

Note that, the function $\text{f}$ is defined at \[\text{x = 5}\].

Also, $\text{f(5)=kx+1=5k+1}$.

Then, the left-hand-limit of the function,

$\underset{\text{x}\to {{\text{5}}^{-}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{\text{5}}^{-}}}{\mathop{\lim }}\,\left( \text{kx+1} \right)\text{=5k+1}$.

The right-hand-limit of the function,

$\underset{\text{x}\to {{\text{5}}^{+}}}{\mathop{\lim }}\,\text{f}\left( \text{x} \right)=\underset{\text{x}\to {{\text{5}}^{+}}}{\mathop{\lim }}\,\left( \text{3x-5} \right)\text{=3}\left( 5 \right)-5=15-5=10$.

Since, the function $\text{f}$ is continuous, so

$\begin{align} & \underset{\text{x}\to {{\text{5}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{5}^{+}}}{\mathop{\lim }}\,\text{(3x-5)=5k+1} \\ & \Rightarrow \text{5k+1=10} \\ & \Rightarrow \text{5k=9} \\ & \Rightarrow \text{k=}\frac{\text{9}}{\text{5}} \\ \end{align}$

Hence, the value of $\text{k}$ is $\frac{9}{5}$ for which the function $\text{f}$ is continuous at $\text{x=5}$.

 

30. Find the values of constants $\mathbf{a}$ and $\mathbf{b}$ such that the function $\mathbf{f}$ defined by is continuous. 

$\mathbf{f}$ such that $\text{f(x)=}\left\{ \begin{align} & \text{5, if x}\le \text{2} \\ & \text{ax+b, if 2}\,<\,\text{x}\,<\,\text{10} \\ & \text{ 21, if x}\ge \text{10} \\ \end{align} \right.$ is a continuous function.

Ans: The given function is $\text{f(x)=}\left\{ \begin{align} & \text{5, }\,\,\,\text{if x}\le \text{2} \\ & \text{ax+b,}\,\text{ if }\,\,\text{2}<\text{x}<\text{10} \\ & \text{ 21, if x}\ge \text{10} \\ \end{align} \right.$

Note that, $\text{f}$ is defined at every point on the real number line.

Now, realise that if the function $\text{f}$ is continuous then $\text{f}$ is continuous at every real number.

So, let $\text{f}$ satisfies continuity at \[\text{x=2}\] and \[\text{x=10}\].

Then, since $\text{f}$ is continuous at $\text{x=2}$, so

\[\begin{align} & \underset{\text{x}\to {{\text{2}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\text{f(x)=f(2)} \\ & \Rightarrow \underset{\text{x}\to {{\text{2}}^{\text{-}}}}{\mathop{\lim }}\,\text{(5)=}\underset{\text{x}\to {{2}^{+}}}{\mathop{\lim }}\,\text{(ax+b)=5} \\ & \Rightarrow \text{5=2a+b} \\ \end{align}\]

$\Rightarrow \text{2a+b=5}$                                                   …… (1)

Again, since $\text{f}$ attains continuity at \[\text{x=10}\], so

\[\begin{align} & \underset{\text{x}\to 1{{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{f(x)=}\underset{\text{x}\to {{10}^{+}}}{\mathop{\lim }}\,\text{f(x)=f(10)} \\ & \Rightarrow \underset{\text{x}\to 1{{\text{0}}^{\text{-}}}}{\mathop{\lim }}\,\text{(ax+b)=}\underset{\text{x}\to {{10}^{+}}}{\mathop{\lim }}\,\text{(21)=21} \\ \end{align}\]

\[\Rightarrow 1\text{0a+b=21}\]                                   …… (2)

Subtracting the equation (1) from the equation (2), gives

$\text{8a=16}\Rightarrow \text{a=2}$

Substituting \[\text{a=2}\] in the equation (1), gives

$\begin{align} & \text{2 }\!\!\times\!\!\text{ 2+b=5} \\ & \Rightarrow \text{4+b=5}\Rightarrow \text{b=1} \\ \end{align}$

Hence, the values of $\text{a}$ and $\text{b}$ are $2$ and $1$ respectively for which $\text{f}$ is a continuous function.

 

31. Show that the function defined by $\text{f(x)=cos(}{{\text{x}}^{\text{2}}}\text{)}$ is a continuous function.

Ans: The given function is $\text{f(x)=cos(}{{\text{x}}^{\text{2}}}\text{)}$.

Note that, $\text{f}$ is defined for all real numbers and so $\text{f}$ can be expressed as the composition of two functions as, $\text{f=g}\circ \text{h}$, where $\text{g(x)=cosx}$ and $\text{h(x)=}{{\text{x}}^{\text{2}}}$.

$\text{ }\!\![\!\!\text{ }\therefore \text{(goh)(x)=g(h(x))=g(}{{\text{x}}^{\text{2}}}\text{)=cos(}{{\text{x}}^{\text{2}}}\text{)=f(x) }\!\!]\!\!\text{ }$

Now, it is to be Proven that, the functions $\text{g(x)=cosx}$ and $\text{h(x)=}{{\text{x}}^{\text{2}}}$ are continuous.

Since the function $\text{g}$ is defined for all the real numbers, let 's consider $\text{c}$ be a real number.

Then, $\text{g(c)=cosc}$.

Substitute $\text{x=c+h}$ into the function $\text{g}$.

When, $\text{x}\to \text{c}$, then \[\text{h}\to 0\].

Then we have,

$\begin{align} & \underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{cosx} \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\text{cos}\left( \text{c+h} \right) \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left[ \text{cosc}\cdot \text{cosh-sinc}\cdot \text{sinh} \right] \\ & =\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{cosc}\cdot \text{cosh} \right)-\underset{\text{h}\to 0}{\mathop{\lim }}\,\left( \text{sinc}\cdot \text{sinh} \right) \\ & \text{=cosc}\cdot \text{cos0}-\text{sinc}\cdot \text{sin0} \\ & \text{=cosc }\!\!\times\!\!\text{ 1}-\text{sinc }\!\!\times\!\!\text{ 0} \\ & \text{=cosc} \\ \end{align}$

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=g(c)}$.

Hence, the function $\text{g(x)=cosx}$ is continuous.

Again, $\text{h(x)=}{{\text{x}}^{\text{2}}}$ is defined for every real point.

So, let consider $\text{k}$ be a real number, then $\text{h(k)=}{{\text{k}}^{\text{2}}}$ and

$\underset{\text{x}\to \text{k}}{\mathop{\lim }}\,\text{h(x)=}\underset{\text{x}\to \text{k}}{\mathop{\lim }}\,{{\text{x}}^{\text{2}}}\text{=}{{\text{k}}^{\text{2}}}$.

Therefore, $\underset{\text{x}\to \text{k}}{\mathop{\lim }}\,\text{h(x)=h(k)}$.

Hence, the function $\text{h}$ is continuous.

Now, remember that for real valued functions $\text{g}$ and $\text{h}$ , such that $\text{(g }\circ \text{ h)}$ is defined at $\text{c}$ , if $\text{g}$ is continuous at $\text{c}$ and $\text{f}$ is continuous at $\text{g(c)}$, then $\text{(f }\circ \text{ h)}$is continuous at $\text{c}$.

Hence, the function $\text{f(x)=(g }\circ \text{ h)(x)=cos(}{{\text{x}}^{2}}\text{)}$ is continuous.

 

32. Show that the function defined by $\text{f(x)=}\left| \text{cosx} \right|$ is a continuous function.

Ans: The given function is $\text{f(x)=}\left| \text{cosx} \right|$.

Note that, the function $\text{f}$ is defined for all real numbers. So, the function $\text{f}$ can be expressed as the composition of two functions as, $\text{f=g}\circ \text{h}$, where $\text{g(x)=}\left| \text{x} \right|$ and $\text{h(x)=cosx}$.

$[\because (\text{goh)(x)=g(h(x))=g(cosx)=}\left| \text{cosx} \right|\text{=f(x) }\!\!]\!\!\text{ }$

Now, it is to be proved that the functions $\text{g(x)=}\left| \text{x} \right|$ and $\text{h(x)=cosx}$ are continuous.

Remember that, $\text{g(x)=}\left| \text{x} \right|$, can be written as

$\text{g(x)=}\left\{ \begin{align} & \text{-x, if x}\,<\,\text{0} \\ & \text{ x, if x}\ge \text{0} \\ \end{align} \right.$

Now, since the function $\text{g}$ is defined for every real number, let consider $\text{c}$ be a real number.

Then there may arise three cases, either $\text{c}<\text{0}$, or $\text{c}>\text{0}$, or $\text{c=0}$.

Let's discuss the cases one after another.

Case I: When $\text{c}<\text{0}$.

Then, $\text{g(c)=-c}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{(-x)=-c}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=g(c)}$.

Hence, the function $\text{g}$ is continuous at every point $\text{x}$, for $\text{x}<\text{0}$.

Case II: When $\text{c}>\text{0}$.

Then, $\text{g(c)=c}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{x=c}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\lim }}\,\text{g(x)=g(c)}$.

Hence, the function $\text{g}$ is continuous at every point $\text{x}$ for $\text{x}>\text{0}$.

Case III: When \[\text{c=0}\].

Then, $\text{g(c)=g(0)=0}$.

Now, the left-hand-limit of the function $\text{g}$ at $\text{x=0}$ is

$\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to {{0}^{\text{-}}}}{\mathop{\lim }}\,\text{(-x)=0}$ and the right-hand-limit is

$\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{(x)=0}$.

Therefore, $\underset{\text{x}\to {{0}^{-}}}{\mathop{\lim }}\,\text{g(x)=}\underset{\text{x}\to {{0}^{+}}}{\mathop{\lim }}\,\text{g(x)=g(0)}$.

Hence, the function $\text{g}$ is continuous at \[\text{x=0}\].

By observing the above three discussions, we can conclude that the function $\text{g}$ is continuous at every real point.

Now, since the function $\text{h(x)=cosx}$ is defined for all real numbers, let 's consider $c$ be a real number. Then, substitute $\text{x=c+h}$ into the function $\text{h}$.

So, when $\text{x}\to \text{c}$, then $\text{h}\to 0$.

Then, we have

\[\text{h}\left( \text{c} \right)=\text{cosc}\] and

\[\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{h(x)=}\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{cosx}\]

\[\text{=}\underset{\text{h}\to \text{0}}{\mathop{\text{lim}}}\,\text{cos}\left( \text{c+h} \right)\]

\[\text{=}\underset{\text{h}\to \text{0}}{\mathop{\text{lim}}}\,\left[ \text{cosc}\cdot \text{cosh-sinc}\cdot \text{sinh} \right]\]

\[\text{=}\underset{\text{h}\to \text{0}}{\mathop{\text{lim}}}\,\left( \text{cosc}\cdot \text{cosh} \right)-\underset{\text{h}\to \text{0}}{\mathop{\text{lim}}}\,\left( \text{sinc}\cdot \text{sinh} \right)\]

\[\begin{align} & \text{=cosc}\cdot \text{cos0}-\text{sinc}\cdot \text{sin0} \\ & \text{=cosc }\!\!\times\!\!\text{ 1-sinc }\!\!\times\!\!\text{ 0} \\ & \text{=cosc} \\ \end{align}\]

Therefore, \[\underset{x\to \text{c}}{\mathop{\lim }}\,\text{h}\left( \text{x} \right)=\text{h}\left( \text{c} \right)\].

Hence, the function \[\text{h(x)=cosx}\] is continuous.

Now remember that, for real valued functions $\text{g}$ and \[\text{h}\], such that $\text{(g}\circ \text{h)}$ is defined at $\text{x=c}$ only if $\text{g}$ is continuous at $\text{c}$ and $\text{f}$ is continuous at $\text{g(c)}$, then the composition functions $\text{(f }\circ \text{ g)}$ is continuous at $\text{x=c}$.

Thus, the function $\text{f(x)=(goh)(x)=g(h(x))=g(cosx)=}\left| \text{cosx} \right|$ is continuous.

 

33. Examine that $\mathbf{sin}\left| \mathbf{x} \right|$ is continuous. 

Ans: First suppose that, $f\left( \text{x} \right)=\sin \left| \text{x} \right|$.

Now, note that the function $\text{f}$ is defined for all real numbers and so \[\text{f}\] can be expressed as the composition of  functions as, $\text{f=g}\circ \text{h,}$ where $\text{g(x)=sinx}$ and $\text{h(x)=}\left| \text{x} \right|$.

$\left[ \text{(g}\circ \text{h)(x)=g(h(x))=g(}\left| \text{x} \right|\text{)=sin}\left| \text{x} \right|\text{=f(x)} \right]$

So, it is to be proved that the functions $\text{g(x)=sinx}$ and \[\text{h(x)=}\left| \text{x} \right|\] are continuous.

Now, remember that, the function $\text{h(x)=}\left| \text{x} \right|$ can be written as 

$\text{h(x)=}\left\{ \begin{align} & \text{-x, if x}<\text{0} \\ & \text{x, if x}\ge \text{0} \\ \end{align} \right.$

Note that, the function $\text{h}$ is defined for every real number, and so let consider $\text{c}$ be a real number. 

Then, there may arise three cases, either $\text{c}<\text{0}$, or $\text{c}>\text{0}$, or $\text{c=0}$.

Let us discuss the cases one after another.

Case I: When $\text{c}<\text{0}$.

Then \[\text{h(c)=-c}\].

Also, \[\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{(-x)=}\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{x=-c}\].

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{h(x)=h(c)}\].

Hence, the function $\text{h}$ is continuous at every point $\text{x}$  for $\text{x}<\text{0}$.

Case II: When $\text{c}>\text{0}$.

Then, \[\text{h(c)=c}\]

Also, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{(-x)=}\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{x=c}$.

Therefore, \[\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{h(x)=h(c)}\].

Thus, the function $\text{h}$ is continuous at every point $\text{x}$  for $\text{x}>\text{0}$.

Case III: When \[\text{c = 0}\].

 Then, $\text{h(c)=h(0)=0}$.

Also, the left-hand-limit of the function $\text{h}$ at $\text{x=0}$ is

$\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\text{lim}}}\,\text{h(x)=}\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\text{lim}}}\,\text{(-x)=0}$ and the right-hand -limit is 

$\underset{\text{x}\to {{\text{0}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{h(x)=}\underset{\text{x}\to {{\text{0}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{(x)=0}$.

Therefore, $\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\text{lim}}}\,\text{h(x)=}\underset{\text{x}\to {{\text{0}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{(x)=h(0)}$.

Thus, the function $\text{h}$ is continuous at \[\text{x = 0}\].

By observing the above three discussions, we can conclude that the function $\text{h}$ is continuous at every point. 

Again, since the function $\text{g(x)=sinx}$ is defined for all real numbers, so let consider $\text{c}$ be a real number and substitute $\text{x=c+k}$ into the function.

Now, when $\text{x}\to \text{c}$ then \[\text{k }\to \text{ 0}\].

Then, we have

$\text{g(c)=sinc}$.

Also,

$\begin{align} & \underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{sinx} \\ & \text{=}\underset{\text{k}\to \text{0}}{\mathop{\text{lim}}}\,\text{sin}\left( \text{c+k} \right) \\ & \text{=}\underset{\text{k}\to \text{0}}{\mathop{\text{lim}}}\,\left[ \text{sinc}\cdot \text{cosk+cosc}\cdot \text{sink} \right] \\ & \text{=}\underset{\text{k}\to \text{0}}{\mathop{\text{lim}}}\,\left( \text{sinc}\cdot \text{cosk} \right)\text{+}\underset{\text{h}\to \text{0}}{\mathop{\text{lim}}}\,\left( \text{cosc}\cdot \text{sink} \right) \\ & \text{=sinc}\cdot \text{cos0+cosc}\cdot \text{sin0} \\ & \text{=sinc+0} \\ & \text{=sinc} \\ \end{align}$

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{g(x)=g(c)}$.

Hence, the function $\text{g}$ is continuous.

Now, remember that, for any two real valued functions $\text{g}$ and $\text{h}$, such that the composition of functions $\text{g}\circ \text{h}$ is defined at $\text{c}$, if $\text{g}$ is continuous at $\text{c}$ and $\text{f}$ is continuous at $\text{g(c)}$, then the composition function $\text{g}\circ \text{h}$ is continuous at $\text{c}$.

Thus, the function $\text{(g}\circ \text{h)(x)=g(h(x))=g(}\left| \text{x} \right|\text{)=sin}\left| \text{x} \right|\text{=f(x)}$ is continuous.

 

34. Find all the points of discontinuity of function $\mathbf{f}$ defined by $\mathbf{f(x)=}\left| \mathbf{x} \right|\mathbf{-}\left| \mathbf{x}+\mathbf{1} \right|$. 

Ans: The given function is $\text{f(x)=}\left| \text{x} \right|\text{-}\left| \text{x+1} \right|$.

Let consider two functions

$\text{g(x)=}\left| \text{x} \right|$ and $\text{h(x)=}\left| \text{x+1} \right|$.

Then we get,  $\text{f=g-h}$.

Now, the function \[\text{g(x)=}\left| \text{x} \right|\] can be written as

$\text{g(x)=}\left\{ \begin{align} & \text{-x, if x}<\text{0} \\ & \text{x, if x}\ge \text{0} \\ \end{align} \right.$

Note that, the function $\text{g}$ is defined for every real number and so let consider $\text{c}$ be a real number.

Then there may arise three cases, either $\text{c}<\text{0}$, or $\text{c}>\text{0}$, or $\text{c=0}$.

Let us discuss the cases one after another.

Case I: When $\text{c}<\text{0}$.

Then, $\text{g(c)=g(0)=-c}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{(-x)=-c}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{g(x)=g(c)}$.

Hence, the function $\text{g}$ is continuous at every point $\text{x}$ for \[\text{x}<\text{0}\].

Case II: When \[\text{c}>\text{0}\].

 Then $\text{g(c)=c}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{g(x)=}\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{x=c}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{g(x)=g(c)}$.

Hence, the function $\text{g}$ is continuous at every point $\text{x}$, where \[\text{x}>\text{0}\].

Case III: When \[\text{c = 0}\].

Then $\text{g(c)=g(0)=0}$.

Also, the left-hand-limit of the function $\text{g}$ at $\text{x=0}$ is

$\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\text{lim}}}\,\text{g(x)=}\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\text{lim}}}\,\text{(-x)=0}$ and the right-hand-limit is

$\underset{\text{x}\to {{\text{0}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{g(x)=}\underset{\text{x}\to {{\text{0}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{(x)=0}$.

Therefore, $\underset{\text{x}\to {{\text{0}}^{\text{-}}}}{\mathop{\text{lim}}}\,\text{g(x)=}\underset{\text{x}\to {{\text{0}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{(x)=g(0)}$.

Hence, the function $\text{g}$ is continuous at \[\text{x = 0}\].

Thus, we can conclude by observing the above three discussions that $\text{g}$ is continuous at every real point.

Now, remember that, the function $\text{h(x)=}\left| \text{x+1} \right|$ can be written as

$\text{h(x)=}\left\{ \begin{align} & \text{-x(x+1), if, x}<\text{-1} \\ & \text{x+1, }\,\,\,\,\,\,\,\,\text{if, x}\ge \text{-1} \\ \end{align} \right.$

Note that, the function $\text{h}$ is defined for all real numbers, and so let consider $\text{c}$ be a real number.

Case I: When \[\text{c}<\text{-1}\].

Then $\text{h(c)=-(c+1)}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\left[ \text{-(x+1)} \right]\text{=-(c+1)}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{h(x)=h(c)}$.

Hence, the function $\text{h}$ attains continuity at every real point $\text{x}$, where \[\text{x}<\text{-1}\].

Case II: When \[\text{c}>\text{-1}\].

Then, $\text{h(c)=c+1}$.

Also, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{h(x)=}\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{(x+1)=(c+1)}$.

Therefore, $\underset{\text{x}\to \text{c}}{\mathop{\text{lim}}}\,\text{h(x)=h(c)}$.

Hence, the function $\text{h}$ satisfies continuity at every real point $\text{x}$ for \[\text{x}>\text{-1}\].

Case III: When \[\text{c =-1}\].

Then, $\text{h(c)=h(-1)=-1+1=0}$.

Also, the left-hand-limit of the function $\text{h}$ at $\text{x=1}$ is

$\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\text{lim}}}\,\text{h(x)=}\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\text{lim}}}\,\left[ \text{-(x+1)} \right]\text{=-(-1+1)=0}$ and the right-hand-limit is

$\underset{\text{x}\to {{\text{1}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{h(x)=}\underset{\text{x}\to {{\text{1}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{(x+1)=(-1+1)=0}$.

Therefore, $\underset{\text{x}\to {{\text{1}}^{\text{-}}}}{\mathop{\text{lim}}}\,\text{h=}\underset{\text{x}\to {{\text{1}}^{\text{+}}}}{\mathop{\text{lim}}}\,\text{h(x)=h(-1)}$.

Thus, the function $\text{h}$ satisfies continuity at \[\text{x=-1}\].

Hence, by observing the above three discussions, we can conclude that the function $\text{h}$ is continuous for every real point.

Now, since the functions $\text{g}$ and $\text{h}$ are both continuous, so the function $\text{f=g-h}$ is also continuous.

Hence, the function $\text{f}$ does not have any discontinuity points.


Conclusion

In conclusion, mastering NCERT Solutions for Class 12 Maths Chapter 5 - Continuity and Differentiability, Class 12 Ex 5.1 is crucial. Focus on understanding the core concepts of continuity and differentiability, particularly at specific points and over intervals. Pay special attention to polynomial, rational, trigonometric, exponential, and logarithmic functions. Prioritize these fundamentals as they are essential for advanced calculus and further mathematical studies.


Class 12 Maths Chapter 5: Exercises Breakdown

S.No.

Chapter 5 - Continuity and Differentiability Exercises in PDF Format

1

Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers)

2

Class 12 Maths Chapter 5 Exercise 5.3 - 15 Questions & Solutions (9 Short Answers, 6 Long Answers)

3

Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

4

Class 12 Maths Chapter 5 Exercise 5.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)

5

Class 12 Maths Chapter 5 Exercise 5.6 - 11 Questions & Solutions (7 Short Answers, 4 Long Answers)

6

Class 12 Maths Chapter 5 Exercise 5.7 - 17 Questions & Solutions (10 Short Answers, 7 Long Answers)

7

Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions



CBSE Class 12 Maths Chapter 5 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.1

1. How are Vedantu’s NCERT Solutions for Class 12 Chapter 5 Continuity and Differentiability helpful in obtaining good scores?

Students can go through exercise-wise NCERT Solutions for Class 12 Maths Chapter 5 as well as other chapters available on Vedantu for learning the chapter. Chapter 5 of CBSE class 12 Maths Continuity and Differentiability is an important chapter for the board exams. Students can refer to the solutions provided by subject experts in case of any doubts. This will improve their understanding of the chapter and also save their time in searching for solutions. NCERT Solutions by Vednatu ensures that students learn the chapter thoroughly and feel confident in the exam.

2. Which site provides NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.1?

Vedantu offers exercise-wise NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability in a free PDF form. Vedantu is an e-learning platform known to provide authentic NCERT Solutions for Class 12 Maths to help students in clearing their doubts regarding the subject. Class 12 Maths NCERT Solutions for Chapter 5 (Exercise 5.1) can be availed online on Vedantu’s site. It can also be downloaded from Vedantu and can be used offline. The platform provides a free PDF download of the solutions which include stepwise solutions to the exercise questions provided by experts. These solutions are designed as per the latest NCERT guidelines and syllabus. Hence, students can use it to score well in the exam.

3. What are the advantages of referring to NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.1?

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability is designed to offer complete coverage of the syllabus. These solutions are prepared by expert teachers as per the latest NCERT guidelines. Students can download Vedantu’s NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.1 as well as other exercises. This will help them to solve the chapter effectively. By referring to the solutions, they can clear all their doubts regarding the exercise. Students will be provided with all the important tips and tricks to solve the problems of the exercise.

4. What are the learning outcomes of Class 12 Maths Chapter 5 Exercise 5.1?

Understanding how to define continuity of a function is the main learning objective of Class 12 Maths Chapter 5 Continuity and Differentiability Exercise 5.1. Students will learn how to prove whether a function is continuous or not with the help of the first exercise of chapter 5 Continuity and Differentiability. By solving the exercise, students will be able to examine a function for its continuity. Students will also be able to find all the points of discontinuity of a function. For a clearer understanding of the exercise questions, students can refer to Vedantu’s NCERT Solutions for the same.

5. How can I understand Chapter 5 of Class 12 Maths?

Chapter 5 of Class 12 Maths deals with continuity and differentiability. To understand the concepts given in this chapter, students can get help from the page Class 12 Maths Chapter 5 NCERT Solutions provided by Vedantu on the website (vedantu.com) and the app as it follows the CBSE curriculum. Vedantu offers the best NCERT solutions free of cost along with revision notes and formulas prepared by the experts to make the concepts simple and easy to understand.

6. How many exercises are there in Class 12 Maths Chapter 5?

There are a total of eight exercises in Class 12 Maths Chapter 5 and one miscellaneous exercise. Vedantu’s NCERT Solutions for Class 12 Maths provide excellent problems and solutions which are prepared by the experts for the students to get well versed in all the exercises. The solutions PDF or notes or any study material is available and can be downloaded from Vedantu’s website (vedantu.com) and also from the Vedantu app absolutely free of cost.

7. Is Class 12 Maths Chapter 5 tough?

Class 12 Maths Chapter 5 “Continuity and Differentiability” is considered to be one of the most important as well as difficult chapters. However, with practice, you can make Chapter 5 your strength. Vedantu offers the best NCERT Solutions for Class 12 Maths available on both Vedabtu’s website (vedantu.com) and Vedantu app that are prepared by subject experts, to clear the doubts students might have and make them understand the concepts.

8. How many theorems are mentioned in Class 12 Maths Chapter 5?

There are six theorems in the chapter “Continuity and differentiability”. Students should know each theorem to be able to solve the problems provided in the textbook. To excel in these theorems, you need to understand and practice the solutions provided in the NCERT Solutions for Class 12 Maths. With the help of experienced subject experts, Vedantu provides the best reference material for the students to ace their exams.

9. What are the important questions in Class 12 Maths Chapter 5?

On Vedantu, students can find the important questions in Class 12 Maths Chapter 5. These important questions have been curated by highly qualified subject experts, for the benefit of Class 12 students. Visit the page NCERT Solutions for Class 12 Maths to download the important questions PDF for offline usage. Students can also find the Vedantu’s Revision notes for class 12 Maths and Vedantu formula of Class 12 Chapter 5 for each chapter of Class 12 Maths on the Vedantu website (vedantu.com) and the Vedantu app.