Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Miscellaneous Exercise Chapter 7 - Integrals

ffImage

NCERT Solutions for Maths Integrals Miscellaneous Exercise Class 12 Chapter 7 - Free PDF Download

NCERT Solutions for Class 12 Maths Chapter 7 Integrals includes solutions to all Miscellaneous Exercise problems. Miscellaneous Exercise Class 12 Chapter 7 is based on the concepts presented in Maths Chapter 7. To perform well on the board exam, download the NCERT Solutions for Class 12 Maths Integrals Miscellaneous Exercise in PDF format and practice them offline. Students can download the revised Class 12 Maths NCERT Solutions from our page, which is prepared so that you can understand it easily.

toc-symbol
Table of Content
1. NCERT Solutions for Maths Integrals Miscellaneous Exercise Class 12 Chapter 7 - Free PDF Download
2. Access NCERT Solutions for Class 12 Maths Chapter 7 Integrals
    2.1Miscellaneous Exercise
3. Class 12 Maths Chapter 7: Exercises Breakdown
4. CBSE Class 12 Maths Chapter 7 Other Study Materials
5. Chapter-Specific NCERT Solutions for Class 12 Maths
FAQs


Class 12 Chapter 7 Maths Miscellaneous Exercise Solutions are aligned with the updated CBSE guidelines for Class 12, ensuring students are well-prepared for exams. Access the Class 12 Maths Syllabus here.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 7 Integrals

Miscellaneous Exercise

Integrate the functions in Exercises 1 to 23.

1. $\dfrac{1}{x-{{x}^{3}}}$

Ans: Given $\dfrac{1}{x-{{x}^{3}}}$

So, $\dfrac{1}{x-{{x}^{3}}}=\dfrac{1}{x\left( 1-{{x}^{2}} \right)}$

$=\dfrac{1}{x\left( 1-x \right)\left( 1+x \right)}$

Let $\dfrac{1}{x\left( 1-x \right)\left( 1+x \right)}=\dfrac{A}{x}+\dfrac{B}{\left( 1-x \right)}+\dfrac{C}{1+x}$                 …….(1)

$\Rightarrow 1=A\left( 1-{{x}^{2}} \right)+Bx\left( 1+x \right)+Cx\left( 1-x \right)$

$\Rightarrow 1=A-A{{x}^{2}}+Bx+B{{x}^{2}}+Cx-C{{x}^{2}}$

On equating the coefficients of ${{x}^{2}},x$ and constant term –

$-A+B-C=0$              

$B+C=0$

$A=1$

Thus, we get $A=1,B=\dfrac{1}{2}$ and $C=-\dfrac{1}{2}$

By equation 1-

$\dfrac{1}{x\left( 1-x \right)\left( 1+x \right)}=\dfrac{1}{x}+\dfrac{1}{2\left( 1-x \right)}-\dfrac{1}{2\left( 1+x \right)}$

$\Rightarrow \int{\dfrac{1}{x\left( 1-x \right)\left( 1+x \right)}}dx=\int{\dfrac{1}{x}dx}+\dfrac{1}{2}\int{\dfrac{1}{\left( 1-x \right)}}dx-\dfrac{1}{2}\int{\dfrac{1}{\left( 1+x \right)}dx}$

$=\log x-\dfrac{1}{2}\log \left( 1-x \right)-\dfrac{1}{2}\log \left( 1+x \right)$

$=\log x-\dfrac{1}{2}\log {{\left( 1-x \right)}^{\dfrac{1}{2}}}-\dfrac{1}{2}\log {{\left( 1+x \right)}^{\dfrac{1}{2}}}$

$=\log \left( \dfrac{x}{{{\left( 1-x \right)}^{\dfrac{1}{2}}}{{\left( 1+x \right)}^{\dfrac{1}{2}}}} \right)+C$

$=\log {{\left( \dfrac{{{x}^{2}}}{\left( 1-{{x}^{2}} \right)} \right)}^{\dfrac{1}{2}}}+C$

$=\dfrac{1}{2}\log \left( \dfrac{{{x}^{2}}}{1-{{x}^{2}}} \right)+C$


2. $\dfrac{1}{\sqrt{x+a}+\sqrt{x+b}}$

Ans: Given $\dfrac{1}{\sqrt{x+a}+\sqrt{x+b}}$

$=\dfrac{1}{\sqrt{x+a}+\sqrt{x+b}}\times \dfrac{\sqrt{x+a}-\sqrt{x+b}}{\sqrt{x+a}-\sqrt{x+b}}$

$=\dfrac{\sqrt{x+a}-\sqrt{x+b}}{\left( x+a \right)-\left( x+b \right)}$

$=\dfrac{\sqrt{x+a}-\sqrt{x+b}}{a-b}$

$\Rightarrow \int{\dfrac{1}{\sqrt{x+a}+\sqrt{x+b}}}dx=\dfrac{1}{a-b}\int{\left( \sqrt{x+a}-\sqrt{x+b} \right)}dx$

$=\dfrac{1}{a-b}\left[ \dfrac{{{\left( x+a \right)}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}-\dfrac{{{\left( x+b \right)}^{\dfrac{3}{2}}}}{\dfrac{3}{2}} \right]$

$=\dfrac{2}{3\left( a-b \right)}\left[ {{\left( x+a \right)}^{\dfrac{3}{2}}}-{{\left( x+b \right)}^{\dfrac{3}{2}}} \right]+C$


3. $\dfrac{1}{x\sqrt{ax-{{x}^{2}}}}$                    $\left[ \text{Hint: x=}\dfrac{a}{t} \right]$

Ans: Given

$\dfrac{1}{x\sqrt{ax-{{x}^{2}}}}$

Let $x=\dfrac{a}{t}$

On differentiating-

$dx=-\dfrac{a}{{{t}^{2}}}dt$

$\Rightarrow \int{\dfrac{1}{x\sqrt{ax-{{x}^{2}}}}dx=\int{\dfrac{1}{\dfrac{a}{t}\sqrt{a.\dfrac{a}{t}-{{\left( \dfrac{a}{t} \right)}^{2}}}}}\left( -\dfrac{a}{{{t}^{2}}}dt \right)}$

$=-\int{\dfrac{1}{at}.\dfrac{1}{\sqrt{\dfrac{1}{t}-\dfrac{1}{{{t}^{2}}}}}}dt$

$=-\dfrac{1}{a}\int{\dfrac{1}{\sqrt{\dfrac{{{t}^{2}}}{t}-\dfrac{{{t}^{2}}}{{{t}^{2}}}}}}dt$

$=-\dfrac{1}{a}\int{\dfrac{1}{\sqrt{t-1}}}dt$

$=-\dfrac{1}{a}\left[ 2\sqrt{t-1} \right]+C$

Substituting value of t-

$=-\dfrac{1}{a}\left[ 2\sqrt{\dfrac{a}{x}-1} \right]+C$

$=-\dfrac{2}{a}\left[ \dfrac{\sqrt{a-x}}{\sqrt{x}} \right]+C$

$=-\dfrac{2}{a}\left[ \sqrt{\dfrac{a-x}{x}} \right]+C$


4. $\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}{{\left( {{\text{x}}^{\text{4}}}\text{+1} \right)}^{\dfrac{\text{3}}{\text{4}}}}}$. 

Ans:The given expression is, $\dfrac{1}{{{x}^{2}}{{\left( {{x}^{4}}+1 \right)}^{\dfrac{3}{4}}}}$. 

On multiplying and dividing by ${{x}^{-3}}$, the following can be obtained as shown below,

$\dfrac{{{x}^{-3}}}{{{x}^{2}}.{{x}^{-3}}{{\left( {{x}^{4}}+1 \right)}^{\dfrac{3}{4}}}}=\dfrac{{{x}^{-3}}{{\left( {{x}^{4}}+1 \right)}^{\dfrac{-3}{4}}}}{{{x}^{2}}-{{x}^{-3}}}=\dfrac{{{\left( {{x}^{4}}+1 \right)}^{\dfrac{-3}{4}}}}{{{x}^{5}}{{\left( {{x}^{4}} \right)}^{\dfrac{-3}{4}}}}=\dfrac{1}{{{x}^{5}}}{{\left( \dfrac{{{x}^{4}}+1}{{{x}^{4}}} \right)}^{\dfrac{-3}{4}}}=\dfrac{1}{{{x}^{5}}}{{\left( 1+\dfrac{1}{{{x}^{4}}} \right)}^{\dfrac{-3}{4}}}$ 

Now, consider $\dfrac{1}{{{x}^{4}}}=t$ 

$\therefore \dfrac{-4}{{{x}^{5}}}=\dfrac{dt}{dx}$

$\Rightarrow \dfrac{dx}{{{x}^{5}}}=\dfrac{-dt}{4}$

$\therefore \int{\dfrac{1}{{{x}^{2}}{{\left( {{x}^{4}}+1 \right)}^{\dfrac{3}{4}}}}dx}=\int{\dfrac{1}{{{x}^{5}}}{{\left( 1+\dfrac{1}{{{x}^{4}}} \right)}^{\dfrac{-3}{4}}}dx}=\dfrac{-1}{4}\int{{{\left( 1+t \right)}^{\dfrac{-3}{4}}}dt}$ 

$\Rightarrow \int{\dfrac{1}{{{x}^{2}}{{\left( {{x}^{4}}+1 \right)}^{\dfrac{3}{4}}}}dx}=\dfrac{-1}{4}\left[ \dfrac{{{\left( 1+t \right)}^{\dfrac{1}{4}}}}{\dfrac{1}{4}} \right]+C=-{{\left( 1+\dfrac{1}{{{x}^{4}}} \right)}^{\dfrac{1}{4}}}+C$, where $C$ is any arbitrary constant.


5. $\dfrac{\text{1}}{{{\text{x}}^{\dfrac{\text{1}}{\text{2}}}}\text{+}{{\text{x}}^{\dfrac{\text{1}}{\text{3}}}}}$. $\text{[}$Hint: $\dfrac{\text{1}}{{{\text{x}}^{\dfrac{\text{1}}{\text{2}}}}\text{+}{{\text{x}}^{\dfrac{\text{1}}{\text{3}}}}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\dfrac{\text{1}}{\text{3}}}}\left( \text{1+}{{\text{x}}^{\dfrac{\text{1}}{\text{6}}}} \right)}$ Put, $\text{x=}{{\text{t}}^{\text{6}}}$ $\text{]}$

Ans: The given expression is, $\dfrac{1}{{{x}^{\dfrac{1}{2}}}+{{x}^{\dfrac{1}{3}}}}$. 

Observe the given hint and obtain as shown below,

$\therefore \dfrac{1}{{{x}^{\dfrac{1}{2}}}+{{x}^{\dfrac{1}{3}}}}=\dfrac{1}{{{x}^{\dfrac{1}{3}}}\left( 1+{{x}^{\dfrac{1}{6}}} \right)}$ 

Consider $x={{t}^{6}}$ 

$\therefore x={{t}^{6}}\Rightarrow dx=6{{t}^{5}}$

$\therefore \int{\dfrac{1}{{{x}^{\dfrac{1}{2}}}+{{x}^{\dfrac{1}{3}}}}dx}=\int{\dfrac{1}{{{x}^{\dfrac{1}{3}}}\left( 1+{{x}^{\dfrac{1}{6}}} \right)}dx}=\int{\dfrac{6{{t}^{5}}}{{{t}^{2}}\left( 1+t \right)}dt}=6\int{\dfrac{{{t}^{3}}}{\left( 1+t \right)}dt}$ 

Now on dividing, we can obtain as shown below,

$\int{\dfrac{1}{{{x}^{\dfrac{1}{2}}}+{{x}^{\dfrac{1}{3}}}}dx}=6\int{\left\{ \left( {{t}^{2}}-t+1 \right)-\dfrac{1}{1+t} \right\}dt}$

$=6\int{\left[ \left( \dfrac{{{t}^{3}}}{3} \right)-\left( \dfrac{{{t}^{2}}}{2} \right)+t-\log \left| 1+t \right| \right]dt}$

$=2{{x}^{\dfrac{1}{2}}}-3{{x}^{\dfrac{1}{3}}}+6{{x}^{\dfrac{1}{6}}}-6\log \left( 1+{{x}^{\dfrac{1}{6}}} \right)+C$

$=2\sqrt{x}-3{{x}^{\dfrac{1}{3}}}+6{{x}^{\dfrac{1}{6}}}-6\log \left( 1+{{x}^{\dfrac{1}{6}}} \right)+C$, where $C$ is any arbitrary constant.


6. $\dfrac{\text{5x}}{\text{(x+1)}\left( {{\text{x}}^{\text{2}}}\text{+9} \right)}$.

Ans: The given expression is, $\dfrac{5x}{(x+1)\left( {{x}^{2}}+9 \right)}$. 

Now consider it as shown below,

$\therefore \dfrac{5x}{(x+1)\left( {{x}^{2}}+9 \right)}=\dfrac{A}{\left( x+1 \right)}+\dfrac{Bx+C}{\left( {{x}^{2}}+9 \right)}\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$

$\Rightarrow 5x=A\left( {{x}^{2}}+9 \right)+Bx+C\left( x+1 \right)$

$\Rightarrow 5x=A{{x}^{2}}+9A+B{{x}^{2}}+Bx+Cx+C$

On equating the coefficients of ${{x}^{2}},\,x$ and constant term, it can be obtained that,  

$A+B=0\,\,\,...\left( 2 \right)$ 

$B+C=5\,\,\,...\left( 3 \right)$

$9A+C=0\,\,\,...\left( 4 \right)$

And on solving these equations, the values of $A,\,B,\,C$ can be obtained as,

$A=\dfrac{-1}{2},\,B=\dfrac{1}{2},\,C=\dfrac{9}{2}$ respectively.

Now, from equation $\left( 1 \right)$ it can be clearly obtained that,

$\int{\dfrac{5x}{(x+1)\left( {{x}^{2}}+9 \right)}dx}=\int{\left\{ \dfrac{-1}{2\left( x+1 \right)}+\dfrac{x+9}{2\left( {{x}^{2}}+9 \right)} \right\}dx}$ 

$=\dfrac{-1}{2}\log \left| x+1 \right|+\dfrac{1}{2}\int{\dfrac{x}{{{x}^{2}}+9}dx}+\dfrac{9}{2}\int{\dfrac{1}{{{x}^{2}}+9}dx}$

$=\dfrac{-1}{2}\log \left| x+1 \right|+\dfrac{1}{4}\log \left| {{x}^{2}}+9 \right|+\left( \dfrac{9}{2} \right)\left( \dfrac{1}{3} \right){{\tan }^{-1}}\left( \dfrac{x}{3} \right)$

$=\dfrac{-1}{2}\log \left| x+1 \right|+\dfrac{1}{4}\log \left| {{x}^{2}}+9 \right|+\dfrac{3}{2}{{\tan }^{-1}}\left( \dfrac{x}{3} \right)+C$, where $C$ is any arbitrary constant.


7. $\dfrac{\text{sinx}}{\text{sin}\left( \text{x- }\!\!\alpha\!\!\text{ } \right)}$.

Ans: The given expression is, $\dfrac{\sin x}{\sin \left( x-\alpha  \right)}$. 

 Now, substitute $x-\alpha =t$ 

$\therefore dx=dt$

$\therefore \int{\dfrac{\sin x}{\sin \left( x-\alpha  \right)}dx}=\int{\dfrac{\sin \left( t+\alpha  \right)}{\sin t}dt}=\int{\dfrac{\sin t\cos \alpha +\cos tsin\alpha }{\sin t}dt}=\int{\cos \alpha +\cot tsin\alpha dt}$$\Rightarrow \int{\dfrac{\sin x}{\sin \left( x-\alpha  \right)}dx}=t\cos \alpha +\sin \alpha \log \left| \sin t \right|+{{C}_{1}}=\left( x-\alpha  \right)\cos \alpha +\sin \alpha \log \left| \sin \left( x-\alpha  \right) \right|+{{C}_{1}}$ 

$\Rightarrow \int{\dfrac{\sin x}{\sin \left( x-\alpha  \right)}dx}=x\cos \alpha +\sin \alpha \log \left| \sin \left( x-\alpha  \right) \right|-\alpha \cos \alpha +{{C}_{1}}=x\cos \alpha +\sin \alpha \log \left| \sin \left( x-\alpha  \right) \right|+C$

 where ${{C}_{1}},\,C$ are any arbitrary constants and $C={{C}_{1}}-\alpha \cos \alpha $.


8. $\dfrac{{{\text{e}}^{\text{5logx}}}\text{-}{{\text{e}}^{\text{4logx}}}}{{{\text{e}}^{\text{3logx}}}\text{-}{{\text{e}}^{\text{2logx}}}}$.

Ans: The given expression is, $\dfrac{{{e}^{5\log x}}-{{e}^{4\log x}}}{{{e}^{3\log x}}-{{e}^{2\log x}}}$. 

 $\therefore \dfrac{{{e}^{5\log x}}-{{e}^{4\log x}}}{{{e}^{3\log x}}-{{e}^{2\log x}}}=\dfrac{{{e}^{4\log x}}\left( {{e}^{\log x}}-1 \right)}{{{e}^{2\log x}}\left( {{e}^{\log x}}-1 \right)}={{e}^{2\log x}}={{x}^{2}}$

Now, integrate the given expression as shown below

$\therefore \int{\dfrac{{{e}^{5\log x}}-{{e}^{4\log x}}}{{{e}^{3\log x}}-{{e}^{2\log x}}}dx}=\int{{{x}^{2}}dx}=\dfrac{{{x}^{3}}}{3}+C$, where $C$ is any arbitrary constant. 


9. $\dfrac{\text{cosx}}{\sqrt{\text{4-si}{{\text{n}}^{\text{2}}}\text{x}}}$.

Ans: The given expression is, $\dfrac{\cos x}{\sqrt{4-{{\sin }^{2}}x}}$. 

 Now, substitute $\sin x=t$ 

$\therefore \cos xdx=dt$

$\therefore \int{\dfrac{\cos x}{\sqrt{4-{{\sin }^{2}}x}}dx}=\int{\dfrac{dt}{\sqrt{{{\left( 2 \right)}^{2}}-{{\left( t \right)}^{2}}}}}={{\sin }^{-1}}\left( \dfrac{t}{2} \right)+C={{\sin }^{-1}}\left( \dfrac{\sin x}{2} \right)+C$, where $C$ is any arbitrary constant. 


10. $\dfrac{\text{si}{{\text{n}}^{\text{8}}}\text{x-co}{{\text{s}}^{\text{8}}}\text{x}}{\text{1-2si}{{\text{n}}^{\text{2}}}\text{xco}{{\text{s}}^{\text{2}}}\text{x}}$.

Ans: The given expression is, $\dfrac{{{\sin }^{8}}x-{{\cos }^{8}}x}{1-2{{\sin }^{2}}x{{\cos }^{2}}x}$. 

$\therefore \dfrac{{{\sin }^{8}}x-{{\cos }^{8}}x}{1-2{{\sin }^{2}}x{{\cos }^{2}}x}=\dfrac{\left( {{\sin }^{4}}x-{{\cos }^{4}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)}{{{\sin }^{2}}x+{{\cos }^{2}}x-{{\sin }^{2}}x{{\cos }^{2}}x-{{\sin }^{2}}x{{\cos }^{2}}x}$

$=\dfrac{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\left( {{\sin }^{2}}x-{{\cos }^{2}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)}{{{\sin }^{2}}x\left( 1-{{\cos }^{2}}x \right)+{{\cos }^{2}}x\left( 1-{{\sin }^{2}}x \right)}$

$=\dfrac{-\left( -{{\sin }^{2}}x+{{\cos }^{2}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)}{{{\sin }^{4}}x+{{\cos }^{4}}x}=-\cos 2x$

Now, integrate the given expression as shown below

$\therefore \int{\dfrac{{{\sin }^{8}}x-{{\cos }^{8}}x}{1-2{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\int{-\cos 2xdx}=\dfrac{-\sin 2x}{2}+C$, where $C$ is any arbitrary constant.

 

11. $\dfrac{\text{1}}{\text{cos}\left( \text{x+a} \right)\text{cos}\left( \text{x+b} \right)}$.

Ans: The given expression is, $\dfrac{1}{\cos \left( x+a \right)\cos \left( x+b \right)}$. 

On multiplying and dividing by $\sin \left( \alpha -\beta  \right)$, the following can be obtained as shown below,

$\dfrac{1}{\sin \left( a-b \right)}\left[ \dfrac{\sin \left( a-b \right)}{\cos \left( x+a \right)\cos \left( x+b \right)} \right]$ 

$\Rightarrow \dfrac{1}{\sin \left( a-b \right)}\left[ \dfrac{\sin \left[ \left( x+a \right)-\left( x+b \right) \right]}{\cos \left( x+a \right)\cos \left( x+b \right)} \right]$

$\Rightarrow \dfrac{1}{\sin \left( a-b \right)}\left[ \dfrac{\sin \left( x+a \right)\cos \left( x+b \right)-\cos \left( x+a \right)\sin \left( x+b \right)}{\cos \left( x+a \right)\cos \left( x+b \right)} \right]$

$\Rightarrow \dfrac{1}{\sin \left( a-b \right)}\left[ \dfrac{\sin (x+a)}{\cos (x+a)}-\dfrac{\sin \left( x+b \right)}{\cos (x+b)} \right]=\dfrac{1}{\sin (a-b)}\left( \tan (x+a)-\tan (x+b) \right)$

$\therefore \int{\dfrac{1}{\cos \left( x+a \right)\cos \left( x+b \right)}dx}=\dfrac{1}{\sin (a-b)}\int{\left( \tan (x+a)-\tan (x+b) \right)dx}$ 

$\Rightarrow \int{\dfrac{1}{\cos \left( x+a \right)\cos \left( x+b \right)}dx}=\dfrac{1}{\sin (a-b)}\left[ \log \left| \dfrac{\cos (x+b)}{\cos (x-a)} \right| \right]+C$, where $C$ is any arbitrary constant.


12. $\dfrac{{{\text{x}}^{\text{3}}}}{\sqrt{\text{1-}{{\text{x}}^{\text{8}}}}}$.

Ans: The given expression is, $\dfrac{{{x}^{3}}}{\sqrt{1-{{x}^{8}}}}$. 

 Now, substitute ${{x}^{4}}=t$ 

$\therefore 4{{x}^{3}}dx=dt$

$\therefore\int{\dfrac{{{x}^{3}}}{\sqrt{1-{{x}^{8}}}}dx}=\dfrac{1}{4}\int{\dfrac{dt}{\sqrt{1-{{\left( t \right)}^{2}}}}}=\dfrac{1}{4}{{\sin }^{-1}}t+C=\dfrac{1}{4}{{\sin }^{-1}}\left( {{x}^{4}} \right)+C$, where $C$ is any arbitrary constant. 


13. $\dfrac{{{\text{e}}^{\text{x}}}}{\left( \text{1+}{{\text{e}}^{\text{x}}} \right)\left( \text{2+}{{\text{e}}^{\text{x}}} \right)}$.

Ans: The given expression is, $\dfrac{{{e}^{x}}}{\left( 1+{{e}^{x}} \right)\left( 2+{{e}^{x}} \right)}$. 

 Now, substitute ${{e}^{x}}=t$ 

$\therefore {{e}^{x}}dx=dt$

$\therefore \int{\dfrac{{{e}^{x}}}{\left( 1+{{e}^{x}} \right)\left( 2+{{e}^{x}} \right)}dx}=\int{\dfrac{dt}{\left( t+1 \right)\left( t+2 \right)}}=\int{\left[ \dfrac{1}{\left( t+1 \right)}-\dfrac{1}{\left( t+2 \right)} \right]dt}$

$\Rightarrow \int{\dfrac{{{e}^{x}}}{\left( 1+{{e}^{x}} \right)\left( 2+{{e}^{x}} \right)}dx}=\log \left| t+1 \right|-\log \left| t+2 \right|+C=\log \left| \dfrac{{{e}^{x}}+1}{{{e}^{x}}+2} \right|+C$, where $C$ is any arbitrary constant. 


14. $\dfrac{\text{1}}{\text{(}{{\text{x}}^{\text{2}}}\text{+1)}\left( {{\text{x}}^{\text{2}}}\text{+4} \right)}$. 

Ans: The given expression is, $\dfrac{1}{({{x}^{2}}+1)\left( {{x}^{2}}+4 \right)}$. 

Now consider it as shown below,

$\therefore \dfrac{1}{({{x}^{2}}+1)\left( {{x}^{2}}+4 \right)}=\dfrac{Ax+B}{\left( {{x}^{2}}+1 \right)}+\dfrac{Cx+D}{\left( {{x}^{2}}+4 \right)}\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$

$\Rightarrow 1=\left( Ax+B \right)\left( {{x}^{2}}+4 \right)+\left( Bx+C \right)\left( {{x}^{2}}+9 \right)$

$\Rightarrow 1=A{{x}^{3}}+4Ax+B{{x}^{2}}+4B+C{{x}^{3}}+Cx+D{{x}^{2}}+D$

On equating the coefficients of ${{x}^{3}},\,{{x}^{2}},\,x$ and constant term, it can be obtained that,  

$A+C=0\,\,\,...\left( 2 \right)$ 

$B+D=0\,\,\,...\left( 3 \right)$

$4A+C=0\,\,\,...\left( 4 \right)$

$4B+D=1\,\,\,...\left( 5 \right)$

And on solving these equations, the values of $A,\,B,\,C,D$ can be obtained as,

$A=0,\,B=\dfrac{1}{3},\,C=0,\,D=\dfrac{1}{3}$ respectively.

Now, from equation $\left( 1 \right)$ it can be clearly obtained that,

$\int{\dfrac{1}{({{x}^{2}}+1)\left( {{x}^{2}}+4 \right)}dx}=\dfrac{1}{3}\int{\left\{ \dfrac{1}{\left( {{x}^{2}}+1 \right)}-\dfrac{1}{\left( {{x}^{2}}+4 \right)}\, \right\}dx}$ 

$=\dfrac{1}{3}{{\tan }^{-1}}x-\dfrac{1}{\left( 3 \right)\left( 2 \right)}{{\tan }^{-1}}\dfrac{x}{2}+C$

$=\dfrac{1}{3}{{\tan }^{-1}}x-\dfrac{1}{6}{{\tan }^{-1}}\dfrac{x}{2}+C$, where $C$ is any arbitrary constant.


15. $\text{co}{{\text{s}}^{\text{3}}}\text{x}{{\text{e}}^{\text{logsinx}}}$.

Ans: The given expression is, ${{\cos }^{3}}x{{e}^{\log \sin x}}$. 

Observe as shown below,

$\therefore {{\cos }^{3}}x{{e}^{\log \sin x}}={{\cos }^{3}}x\sin x$

Now, consider $cosx=t$ 

$\therefore -\sin xdx=dt$

$\therefore \int{{{\cos }^{3}}x{{e}^{\log \sin x}}dx}=\int{{{\cos }^{3}}x\sin xdx}=-\int{{{t}^{3}}dt}=\dfrac{-{{t}^{4}}}{4}+C=\dfrac{-{{\cos }^{4}}x}{4}+C$, where $C$ is any arbitrary constant. 


16. ${{\text{e}}^{\text{3logx}}}{{\left( {{\text{x}}^{\text{4}}}\text{+1} \right)}^{\text{-1}}}$.

Ans: The given expression is, ${{e}^{3\log x}}{{\left( {{x}^{4}}+1 \right)}^{-1}}$. 

Observe as shown below,

$\therefore {{e}^{3\log x}}{{\left( {{x}^{4}}+1 \right)}^{-1}}=\dfrac{{{x}^{3}}}{\left( {{x}^{4}}+1 \right)}$

Now, consider ${{x}^{4}}+1=t$ 

$\therefore 4{{x}^{3}}dx=dt$

$\therefore \int{{{e}^{3\log x}}{{\left( {{x}^{4}}+1 \right)}^{-1}}dx}=\int{\dfrac{{{x}^{3}}}{{{x}^{4}}+1}dx}=\dfrac{1}{4}\int{\dfrac{dt}{t}}=\dfrac{1}{4}\log \left| t \right|+C=\dfrac{\log \left| {{x}^{4}}+1 \right|}{4}+C$, where $C$ is any arbitrary constant. 


17. $\text{f }\!\!'\!\!\text{ }\left( \text{ax+b} \right){{\left[ \text{f(ax+b)} \right]}^{\text{n}}}$.

Ans: The given expression is, $f'\left( ax+b \right){{\left[ f(ax+b) \right]}^{n}}$. 

Now, consider $\left[ f(ax+b) \right]=t$ 

$\therefore af'(ax+b)dx=dt$

$\therefore \int{f'\left( ax+b \right){{\left[ f(ax+b) \right]}^{n}}dx}=\dfrac{1}{a}\int{{{t}^{n}}dt}=\dfrac{{{t}^{n+1}}}{a\left( n+1 \right)}+C=\dfrac{{{\left[ f(ax+b) \right]}^{n+1}}}{a\left( n+1 \right)}+C$, where $C$ is any arbitrary constant. 


18. $\dfrac{\text{1}}{\sqrt{\text{si}{{\text{n}}^{\text{3}}}\text{xsin}\left( \text{x+ }\!\!\alpha\!\!\text{ } \right)}}$.

Ans: The given expression is, $\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha  \right)}}$. 

$\therefore \dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha  \right)}}=\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin x\cos \alpha +\cos \alpha \sin x}}$

$=\dfrac{1}{\sqrt{{{\sin }^{4}}x\cos \alpha +{{\sin }^{3}}x\sin \alpha \cos x}}$

$=\dfrac{1}{{{\sin }^{2}}x\sqrt{\cos \alpha +\sin \alpha \cot x}}=\dfrac{\cos e{{c}^{2}}x}{\sqrt{\cos \alpha +\sin \alpha \cot x}}$

Now, substitute $\cos \alpha +\sin \alpha \cot x=t$ 

$\therefore -\cos e{{c}^{2}}x\sin \alpha dx=dt$

$  \therefore \int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha  \right)}}dx}=\int{\dfrac{\cos e{{c}^{2}}x}{\sqrt{\cos \alpha +\sin \alpha \cot x}}}=\dfrac{-1}{\sin \alpha }\int{\dfrac{dt}{\sqrt{t}}}=\dfrac{-2\sqrt{t}}{\sin \alpha }+C $  

$  \Rightarrow \int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha  \right)}}dx}=\dfrac{-2\sqrt{\cos \alpha +\sin \alpha \cot x}}{\sin \alpha }+C=\dfrac{-2}{\sin \alpha }\sqrt{\cos \alpha +\dfrac{\sin \alpha \cos x}{\sin x}}+C $ 

, where $C$ is an arbitrary constant. 


19. $\sqrt{\dfrac{\text{1-}\sqrt{\text{x}}}{\text{1+}\sqrt{\text{x}}}}$.

Ans: The given expression is, $\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}$. 

Assume, $I=\int{\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}dx}$ 

Now, substitute $x={{\cos }^{2}}\theta $ 

$\therefore dx=-2\sin \theta \cos \theta dt$

$\therefore I=\int{\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}\left( -2\sin \theta \cos \theta  \right)d\theta }=-\int{\sqrt{\dfrac{2{{\sin }^{2}}\dfrac{\theta }{2}}{2{{\cos }^{2}}\dfrac{\theta }{2}}}\sin 2\theta d\theta }=-\int{\tan \dfrac{\theta }{2}2\sin \theta \cos \theta d\theta }$

$\Rightarrow I=-2\int{\dfrac{\sin \dfrac{\theta }{2}}{\cos \dfrac{\theta }{2}}2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\cos \theta d\theta }=-4\int{{{\sin }^{2}}\dfrac{\theta }{2}(2{{\cos }^{2}}\dfrac{\theta }{2}-1)d\theta }$

$\Rightarrow I=-8\int{{{\sin }^{2}}\dfrac{\theta }{2}{{\cos }^{2}}\dfrac{\theta }{2}d\theta }+4\int{{{\sin }^{2}}\dfrac{\theta }{2}d}\theta =2\int{{{\sin }^{2}}\dfrac{\theta }{2}d\theta }+4\int{{{\sin }^{2}}\dfrac{\theta }{2}d}\theta $

$\Rightarrow I=-2\int{\left( \dfrac{1-\cos 2\theta }{2} \right)d\theta }+4\int{\left( \dfrac{1-\cos \theta }{2} \right)d}\theta =-2\left[ \dfrac{\theta }{2}-\dfrac{\sin 2\theta }{2} \right]+4\left[ \dfrac{\theta }{2}-\dfrac{\sin \theta }{2} \right]+C$$\Rightarrow I=-\theta +\dfrac{\sin 2\theta }{2}+2\sin \theta +C=\theta +\sqrt{1-{{\cos }^{2}}\theta }\cos \theta -2\sqrt{1-{{\cos }^{2}}\theta }+C$

$\Rightarrow I={{\cos }^{-1}}\sqrt{x}+\sqrt{x(1-x)}-2\sqrt{1-x}+C=-2\sqrt{1-x}+{{\cos }^{-1}}\sqrt{x}+\sqrt{x-{{x}^{2}}}+C$, where $C$ is any arbitrary constant. 


20. $\dfrac{\text{2+sin2x}}{\text{1+cos2x}}{{\text{e}}^{\text{x}}}$.

Ans: The given expression is, $\dfrac{2+\sin 2x}{1+\cos 2x}{{e}^{x}}$. 

Assume, $I=\int{\dfrac{2+\sin 2x}{1+\cos 2x}{{e}^{x}}dx}$ 

$\Rightarrow I=\int{\dfrac{2+2\sin x\cos x}{2{{\cos }^{2}}x}{{e}^{x}}dx}=\int{\left( \dfrac{1+\sin x\cos x}{{{\cos }^{2}}x} \right){{e}^{x}}dx}=\int{\left( {{\sec }^{2}}x+\tan x \right){{e}^{x}}dx}$

Now, consider $f\left( x \right)=\tan x$ 

$\therefore f'\left( x \right)={{\sec }^{2}}xdx$

$\therefore I=\int{\dfrac{2+\sin 2x}{1+\cos 2x}{{e}^{x}}}dx=\int{\left( f\left( x \right)+f'\left( x \right) \right){{e}^{x}}dx}={{e}^{x}}f\left( x \right)+C={{e}^{x}}\tan x+C$, where $C$ is any arbitrary constant. 


21. $\dfrac{{{\text{x}}^{\text{2}}}\text{+x+1}}{{{\text{(x+1)}}^{\text{2}}}\left( \text{x+2} \right)}$.

Ans: The given expression is, $\dfrac{{{x}^{2}}+x+1}{{{(x+1)}^{2}}\left( x+2 \right)}$. 

Now consider it as shown below,

$\therefore \dfrac{{{x}^{2}}+x+1}{{{(x+1)}^{2}}\left( x+2 \right)}=\dfrac{A}{\left( x+1 \right)}+\dfrac{B}{\left( x+1 \right)}+\dfrac{C}{\left( x+2 \right)}\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$

$\Rightarrow {{x}^{2}}+x+1=A\left( x+1 \right)\left( x+2 \right)+B\left( x+2 \right)+C{{\left( x+1 \right)}^{2}}$

$\Rightarrow {{x}^{2}}+x+1=A\left( {{x}^{2}}+3x+2 \right)+B\left( x+2 \right)+C\left( {{x}^{2}}+2x+1 \right)$

$\Rightarrow {{x}^{2}}+x+1=\left( A+C \right){{x}^{2}}+x\left( 3A+B+2C \right)+\left( 2A+2B+C \right)$

On equating the coefficients of ${{x}^{2}},\,x$ and constant term, it can be obtained that,  

$A+C=1\,\,\,...\left( 2 \right)$ 

$3A+B+2C=1\,\,\,...\left( 3 \right)$

$2A+2B+C=1\,\,\,...\left( 4 \right)$

And on solving these equations, the values of $A,\,B,\,C$ can be obtained as,

$A=-2,\,B=1,\,C=3$ respectively.

Now, from equation $\left( 1 \right)$ it can be clearly obtained that,

$\int{\dfrac{{{x}^{2}}+x+1}{{{(x+1)}^{2}}\left( x+2 \right)}dx}=\int{\left\{ \dfrac{-2}{\left( x+1 \right)}+\dfrac{1}{\left( x+1 \right)}+\dfrac{3}{\left( x+2 \right)} \right\}dx}$ 

$=-2\int{\dfrac{1}{x+1}dx}+\int{\dfrac{1}{{{\left( x+1 \right)}^{2}}}dx}+3\int{\dfrac{1}{x+2}dx}$

$=-2\log \left| x+1 \right|+3\log \left| x+2 \right|-\dfrac{1}{(x+1)}+C$, where $C$ is any arbitrary constant.


22. $\text{ta}{{\text{n}}^{\text{-1}}}\sqrt{\dfrac{\text{1-x}}{\text{1+x}}}$.

Ans: The given expression is, ${{\tan }^{-1}}\sqrt{\dfrac{1-x}{1+x}}$. 

Assume, $I=\int{{{\tan }^{-1}}\sqrt{\dfrac{1-x}{1+x}}dx}$ 

Now, consider $x=\cos \theta $ 

$\therefore dx=-\sin \theta d\theta $

$\therefore I=\int{{{\tan }^{-1}}\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}\left( -\sin \theta  \right)d\theta }=-\int{{{\tan }^{-1}}\sqrt{\dfrac{2{{\sin }^{2}}\dfrac{\theta }{2}}{2{{\cos }^{2}}\dfrac{\theta }{2}}}\sin \theta d\theta }=-\int{{{\tan }^{-1}}\tan \dfrac{\theta }{2}\sin \theta d\theta }$ $\Rightarrow I=-\dfrac{1}{2}\int{\theta \sin \theta d\theta }=-\dfrac{1}{2}\left[ \theta \left( -\cos \theta  \right)-\int{1.(-\cos \theta )d\theta } \right]=-\dfrac{1}{2}\left[ \theta \left( \cos \theta  \right)+\sin \theta  \right]$$\Rightarrow I=\dfrac{x}{2}{{\cos }^{-1}}x-\dfrac{1}{2}\sqrt{1-{{x}^{2}}}+C=\dfrac{1}{2}\left( x{{\cos }^{-1}}x-\sqrt{1-{{x}^{2}}} \right)+C$, where $C$ is any arbitrary constant.


23. $\dfrac{\sqrt{{{\text{x}}^{\text{2}}}\text{+1}}\left[ \text{log}\left( {{\text{x}}^{\text{2}}}\text{+1} \right)\text{-2logx} \right]}{{{\text{x}}^{\text{4}}}}$.

Ans: The given expression is, $\dfrac{\sqrt{{{x}^{2}}+1}\left[ \log \left( {{x}^{2}}+1 \right)-2\log x \right]}{{{x}^{4}}}$. 

Assume, $I=\int{\dfrac{\sqrt{{{x}^{2}}+1}\left[ \log \left( {{x}^{2}}+1 \right)-2\log x \right]}{{{x}^{4}}}dx}$ $\Rightarrow I=\dfrac{\sqrt{{{x}^{2}}+1}}{{{x}^{4}}}\left[ \log \left( {{x}^{2}}+1 \right)-\log {{x}^{2}} \right]=\dfrac{\sqrt{{{x}^{2}}+1}}{{{x}^{4}}}\left[ \log \left( \dfrac{{{x}^{2}}+1}{{{x}^{2}}} \right) \right]=\dfrac{1}{{{x}^{3}}}\sqrt{\dfrac{{{x}^{2}}+1}{{{x}^{2}}}}\left[ \log \left( 1+\dfrac{1}{{{x}^{2}}} \right) \right]$Consider $1+\dfrac{1}{{{x}^{2}}}=t$ 

$\therefore \dfrac{-2}{{{x}^{3}}}dx=dt$

Now, integrate the given expression as shown below $\therefore I=\int{\dfrac{\sqrt{{{x}^{2}}+1}\left[ \log \left( {{x}^{2}}+1 \right)-2\log x \right]}{{{x}^{4}}}dx}=\int{\dfrac{1}{{{x}^{3}}}\sqrt{\dfrac{{{x}^{2}}+1}{{{x}^{2}}}}\left[ \log \left( 1+\dfrac{1}{{{x}^{2}}} \right) \right]dx}=\dfrac{-1}{2}\int{{{t}^{\dfrac{1}{2}}}\log tdt}+C$Using integration by parts, it can be obtained that,

$I=\dfrac{-1}{2}\left[ \log t.\int{{{t}^{\dfrac{1}{2}}}dt-\left\{ \left( \dfrac{d}{dt}\log t \right)\int{{{t}^{\dfrac{1}{2}}}dt} \right\}dt} \right]=\dfrac{-1}{2}\left[ \log t.\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}-\int{\dfrac{1}{t}.\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}dt} \right]$ 

$\Rightarrow I=\dfrac{-1}{2}\left[ \dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\log t-\dfrac{2}{3}\int{{{t}^{\dfrac{1}{2}}}dt} \right]=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}\log t+\dfrac{2}{9}{{t}^{\dfrac{3}{2}}}=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}\left[ \log t-\dfrac{2}{3} \right]$

$\Rightarrow I=\dfrac{-1}{2}\left[ \dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\log t-\dfrac{2}{3}\int{{{t}^{\dfrac{1}{2}}}dt} \right]=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}\log t+\dfrac{2}{9}{{t}^{\dfrac{3}{2}}}=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}\left[ \log t-\dfrac{2}{3} \right]$

$\Rightarrow I=\dfrac{-1}{2}\left[ 1+\dfrac{1}{{{x}^{2}}} \right]\left( \log \left( 1+\dfrac{1}{{{x}^{2}}} \right)-\dfrac{2}{3} \right)+C$, where $C$ is any arbitrary constant. 


Evaluate the definite integrals in Exercises 24 to 31.

24. $\int_{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}^{\text{ }\!\!\pi\!\!\text{ }}{{{\text{e}}^{\text{x}}}\left( \dfrac{\text{1-sinx}}{\text{1-cosx}} \right)\text{dx}}$.

Ans: The given expression is, $\int_{\dfrac{\pi }{2}}^{\pi }{{{e}^{x}}\left( \dfrac{1-\sin x}{1-\cos x} \right)dx}$. 

Assume, $I=\int_{\dfrac{\pi }{2}}^{\pi }{{{e}^{x}}\left( \dfrac{1-\sin x}{1-\cos x} \right)dx}$ 

$\Rightarrow I=\int_{\dfrac{\pi }{2}}^{\pi }{{{e}^{x}}\left( \dfrac{1-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{+2{{\sin }^{2}}\dfrac{x}{2}} \right)dx=}\int_{\dfrac{\pi }{2}}^{\pi }{{{e}^{x}}\left( \dfrac{\cos e{{c}^{2}}\dfrac{x}{2}}{2}-\cot \dfrac{x}{2} \right)dx}$

Now, substitute $f\left( x \right)=-\cot \dfrac{x}{2}$ 

$\therefore f'\left( x \right)=-\left( -\dfrac{1}{2}\cos e{{c}^{2}}\dfrac{x}{2} \right)dx=\dfrac{1}{2}\cos e{{c}^{2}}\dfrac{x}{2}dx$

$\therefore I=\int_{\dfrac{\pi }{2}}^{\pi }{{{e}^{x}}\left( f(x)+f'(x) \right)dx}=\left[ {{e}^{x}}f(x) \right]_{\dfrac{\pi }{2}}^{\pi }=\left[ {{e}^{x}}\cot \dfrac{x}{2} \right]_{\dfrac{\pi }{2}}^{\pi }$

$\Rightarrow I=\left[ {{e}^{\pi }}\cot \dfrac{\pi }{2}-{{e}^{\dfrac{\pi }{2}}}\cot \dfrac{\pi }{4} \right]=\left[ 0-{{e}^{\dfrac{\pi }{2}}} \right]=-{{e}^{\dfrac{\pi }{2}}}$


25. $\int_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\dfrac{\text{sinxcosx}}{\text{si}{{\text{n}}^{\text{4}}}\text{x+co}{{\text{s}}^{\text{4}}}\text{x}}\text{dx}}$.

Ans: The given expression is, $\int_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$. 

Assume, $I=\int_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$ 

$\Rightarrow I=\int_{0}^{\dfrac{\pi }{4}}{\dfrac{\dfrac{\sin x\cos x}{{{\cos }^{4}}x}}{\dfrac{{{\sin }^{4}}x+{{\cos }^{4}}x}{{{\cos }^{4}}x}}dx}=\int_{0}^{\dfrac{\pi }{4}}{\dfrac{\tan x{{\sec }^{2}}x}{1+{{\tan }^{4}}x}dx}$

Now, substitute ${{\tan }^{2}}x=t$ 

$\therefore 2\tan x{{\sec }^{2}}xdx=dt$

And also when $x=0,\,t=0$ and when $x=\dfrac{\pi }{4},\,t=1$.

$\therefore I=\dfrac{1}{2}\int_{0}^{1}{\dfrac{dt}{1+{{t}^{2}}}}=\dfrac{1}{2}\left[ {{\tan }^{-1}}t \right]_{0}^{1}=\dfrac{1}{2}\left[ {{\tan }^{-1}}\left( 1 \right)-{{\tan }^{-1}}\left( 0 \right) \right]=\dfrac{1}{2}\left( \dfrac{\pi }{4} \right)=\dfrac{\pi }{8}$


26. $\int_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\dfrac{\text{co}{{\text{s}}^{\text{2}}}\text{x}}{\text{co}{{\text{s}}^{\text{2}}}\text{x+4si}{{\text{n}}^{\text{2}}}\text{x}}\text{dx}}$.

Ans: The given expression is, $\int_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{2}}x}{{{\cos }^{2}}x+4{{\sin }^{2}}x}dx}$. 

Assume, $I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{2}}x}{{{\cos }^{2}}x+4{{\sin }^{2}}x}dx}$ 

$\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{2}}x}{{{\cos }^{2}}x+4\left( 1-{{\cos }^{2}}x \right)}dx}=\dfrac{-1}{3}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{4-4-3{{\cos }^{2}}x}{-3{{\cos }^{2}}x+4}dx}$

$\Rightarrow I=-\dfrac{1}{3}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{4-3{{\cos }^{2}}x}{4-3{{\cos }^{2}}x}dx}+\dfrac{1}{3}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{4}{4-3{{\cos }^{2}}x}dx}=-\dfrac{1}{3}\int_{0}^{\dfrac{\pi }{2}}{dx}+\dfrac{1}{3}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{4se{{c}^{2}}x}{4{{\sec }^{2}}x-3}dx}$

$\Rightarrow I=\dfrac{-1}{3}\left[ x \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{3}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{4se{{c}^{2}}x}{4\left( 1+{{\tan }^{2}}x \right)-3}dx}=\dfrac{-\pi }{6}+\dfrac{2}{3}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{2se{{c}^{2}}x}{\left( 1+4{{\tan }^{2}}x \right)}dx}\,\,\,...\left( 1 \right)$

Observe, $\int_{0}^{\dfrac{\pi }{2}}{\dfrac{2se{{c}^{2}}x}{\left( 1+4{{\tan }^{2}}x \right)}dx}$

Now, substitute $2\tan x=t$ 

$\therefore 2{{\sec }^{2}}xdx=dt$

And also when $x=0,\,t=0$ and when $x=\dfrac{\pi }{2},\,t=\infty $. 

$\therefore \int_{0}^{\dfrac{\pi }{2}}{\dfrac{2se{{c}^{2}}x}{\left( 1+4{{\tan }^{2}}x \right)}dx}=\int_{0}^{\infty }{\dfrac{dt}{\left( 1+{{t}^{2}} \right)}dx}=\left[ {{\tan }^{-1}}\left( t \right) \right]_{0}^{\infty }=\left[ {{\tan }^{-1}}\left( \infty  \right)-{{\tan }^{-1}}\left( 0 \right) \right]=\dfrac{\pi }{2}$Henceforth from equation $\left( 1 \right)$, it can be obtained that, 

$I=-\dfrac{\pi }{6}+\dfrac{2}{3}\left( \dfrac{\pi }{2} \right)=-\dfrac{\pi }{6}+\dfrac{2\pi }{6}=\dfrac{\pi }{6}$


27. $\int_{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\dfrac{\text{sinx+cosx}}{\sqrt{\text{sin2x}}}\text{dx}}$.

Ans: The given expression is, $\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\sqrt{\sin 2x}}dx}$. 

Assume, $I=\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\sqrt{\sin 2x}}dx}$ 

$\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\sqrt{-\left( -1+1-2\sin x\cos x \right)}}dx}=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\sqrt{1-\left( {{\sin }^{2}}x+{{\cos }^{2}}x-2\sin x\cos x \right)}}dx}$

$\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\sqrt{1-{{\left( \sin x-\cos x \right)}^{2}}}}dx}$

Now, substitute $\left( \sin x-\cos x \right)=t$ 

$\therefore (\sin x+\cos x)dx=dt$

And also when $x=\dfrac{\pi }{6},\,t=\left( \dfrac{1-\sqrt{3}}{2} \right)$ and when $x=\dfrac{\pi }{3},\,t=\left( \dfrac{\sqrt{3}-1}{2} \right)$. 

$\therefore I=\int_{\dfrac{1-\sqrt{3}}{2}}^{\dfrac{\sqrt{3}-1}{2}}{\dfrac{dt}{\sqrt{1-{{t}^{2}}}}}=\int_{-\left( \dfrac{-1+\sqrt{3}}{2} \right)}^{\dfrac{\sqrt{3}-1}{2}}{\dfrac{dt}{\sqrt{1-{{t}^{2}}}}}$

As $\dfrac{1}{\sqrt{1-{{\left( -t \right)}^{2}}}}=\dfrac{1}{\sqrt{1-{{t}^{2}}}}$, it can be thus obtained that $\dfrac{1}{\sqrt{1-{{t}^{2}}}}$ is an even function, 

$\therefore \int_{-a}^{a}{f\left( x \right)dx}=2\int_{0}^{a}{f\left( x \right)dx}$ 

$\therefore I=2\int_{0}^{\dfrac{\sqrt{3}-1}{2}}{\dfrac{dt}{\sqrt{1-{{t}^{2}}}}}=\left[ 2{{\sin }^{-1}}t \right]_{0}^{\dfrac{\sqrt{3}-1}{2}}=2{{\sin }^{-1}}\left( \dfrac{\sqrt{3}-1}{2} \right)$ $x=\dfrac{\pi }{6},\,t=\left( \dfrac{1-\sqrt{3}}{2} \right)$ and when $x=\dfrac{\pi }{3},\,t=\left( \dfrac{\sqrt{3}-1}{2} \right)$. 


28. $\int_{\text{0}}^{\text{1}}{\dfrac{\text{dx}}{\sqrt{\text{1+x}}\text{-}\sqrt{\text{x}}}}$.

Ans: The given expression is, $\int_{0}^{1}{\dfrac{dx}{\sqrt{1+x}-\sqrt{x}}}$. 

Assume, $I=\int_{0}^{1}{\dfrac{dx}{\sqrt{1+x}-\sqrt{x}}}$ 

$\Rightarrow I=\int_{0}^{1}{\dfrac{1}{\sqrt{1+x}-\sqrt{x}}\times \dfrac{\sqrt{1+x}+\sqrt{x}}{\sqrt{1+x}+\sqrt{x}}dx}=\int_{0}^{1}{\dfrac{\sqrt{1+x}+\sqrt{x}}{1+x-x}dx}$

$\Rightarrow I=\int_{0}^{1}{\sqrt{1+x}dx}+\int_{0}^{1}{\sqrt{x}dx}=\dfrac{2}{3}\left[ {{\left( 1+x \right)}^{\dfrac{2}{3}}} \right]_{0}^{1}+\dfrac{2}{3}\left[ {{\left( x \right)}^{\dfrac{3}{2}}} \right]_{0}^{1}=\dfrac{2}{3}\left[ {{\left( 2 \right)}^{\dfrac{2}{3}}}-1 \right]+\dfrac{2}{3}=\dfrac{4\sqrt{2}}{3}$


29. $\int_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{}}{\text{4}}}{\dfrac{\text{sinx+cosx}}{\text{9+16sin2x}}\text{dx}}$.

Ans: The given expression is, $\int_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x+\cos x}{9+16\sin 2x}dx}$. 

Assume, $I=\int_{0}^{\dfrac{\pi }{4}}{\dfrac{\sin x+\cos x}{9+16\sin 2x}dx}$ 

Now, substitute $\sin x-\cos x=t$ 

$\therefore \left( \cos x+\sin x \right)dx=dt$

And also when $x=0,\,t=-1$ and when $x=\dfrac{\pi }{4},\,t=0$.

$\therefore {{\left( \sin x-\cos x \right)}^{2}}={{t}^{2}}$

$\Rightarrow 1-2\sin x\cos x={{t}^{2}}$

$\Rightarrow 1-\sin 2x={{t}^{2}}$

$\Rightarrow \sin 2x=1-{{t}^{2}}$

$\therefore I=\int_{-1}^{0}{\dfrac{dt}{9+16\left( 1-{{t}^{2}} \right)}}=\int_{-1}^{0}{\dfrac{dt}{25-16{{t}^{2}}}}=\int_{-1}^{0}{\dfrac{dt}{{{\left( 5 \right)}^{2}}-{{\left( 4t \right)}^{2}}}}$

$\Rightarrow I=\dfrac{1}{4}\left[ \dfrac{1}{2\left( 5 \right)}\log \left| \dfrac{5+4t}{5-4t} \right| \right]_{-1}^{0}=\dfrac{1}{40}\left[ \log \left| 1 \right|-\log \left| \dfrac{1}{9} \right| \right]=\dfrac{1}{40}\log \left| 9 \right|$


30. $\int_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{sin2xta}{{\text{n}}^{\text{-1}}}\left( \text{sinx} \right)\text{dx}}$.

Ans: The given expression is, $\int_{0}^{\dfrac{\pi }{2}}{\sin 2x{{\tan }^{-1}}\left( \sin x \right)dx}$. 

Assume, $I=\int_{0}^{\dfrac{\pi }{2}}{\sin 2x{{\tan }^{-1}}\left( \sin x \right)dx}$ 

$\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{\sin 2x{{\tan }^{-1}}\left( \sin x \right)dx}=\int_{0}^{\dfrac{\pi }{2}}{2\sin x\cos x{{\tan }^{-1}}\left( \sin x \right)dx}$

Now, substitute $\sin x=t$ 

$\therefore \cos xdx=dt$

And also when $x=0,\,t=0$ and when $x=\dfrac{\pi }{2},\,t=1$. 

$\therefore I=2\int_{0}^{1}{t{{\tan }^{-1}}\left( t \right)dt}$

Observe, $\int{t{{\tan }^{-1}}\left( t \right)dt}$

$\therefore \int{t{{\tan }^{-1}}\left( t \right)dt}={{\tan }^{-1}}t\int{tdt}-\int{\left\{ \dfrac{d\left( {{\tan }^{-1}}t \right)}{dt}\int{tdt} \right\}dt}={{\tan }^{-1}}t.\dfrac{{{t}^{2}}}{2}-\int{\dfrac{1}{1+{{t}^{2}}}.\dfrac{{{t}^{2}}}{2}dt}$

$=\dfrac{{{t}^{2}}{{\tan }^{-1}}t}{2}-\int{\dfrac{{{t}^{2}}+1-1}{1+{{t}^{2}}}dt}=\dfrac{{{t}^{2}}{{\tan }^{-1}}t}{2}-\int{1dt}+\int{\dfrac{1}{1+{{t}^{2}}}dt}=\dfrac{{{t}^{2}}{{\tan }^{-1}}t}{2}-\dfrac{1}{2}t+\dfrac{1}{2}{{\tan }^{-1}}t$

$\therefore \int_{0}^{1}{t.{{\tan }^{-1}}tdt}=\left[ \dfrac{{{t}^{2}}{{\tan }^{-1}}t}{2}-\dfrac{1}{2}t+\dfrac{1}{2}{{\tan }^{-1}}t \right]_{0}^{1}=\dfrac{1}{2}\left[ \dfrac{\pi }{4}-1+\dfrac{\pi }{4} \right]=\dfrac{\pi }{4}-\dfrac{1}{2}$

Henceforth from equation $\left( 1 \right)$, it can be obtained that, 

$I=2\left[ \dfrac{\pi }{2}-\dfrac{1}{2} \right]=\dfrac{\pi }{2}-1$


31. $\int_{\text{1}}^{\text{4}}{\left[ \left| \text{x-1} \right|\text{+}\left| \text{x-2} \right|\text{+}\left| \text{x-3} \right| \right]\text{dx}}$.

Ans: The given expression is, $\int_{1}^{4}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]dx}$. 

Assume, $\int_{1}^{4}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]dx}$ 

$\Rightarrow I=\int_{1}^{4}{\left| x-1 \right|dx}+\int_{1}^{4}{\left| x-2 \right|dx}+\int_{1}^{4}{\left| x-3 \right|dx}$

$\therefore I={{I}_{1}}+{{I}_{2}}+{{I}_{3}}\,\,\,...\left( 1 \right)$

where, ${{I}_{1}}=\int_{1}^{4}{\left| x-1 \right|dx},\,{{I}_{2}}=\int_{1}^{4}{\left| x-2 \right|dx},\,{{I}_{3}}=+\int_{1}^{4}{\left| x-3 \right|dx}$ 

Now, consider, ${{I}_{1}}=\int_{1}^{4}{\left| x-1 \right|dx}$, where $\left( x-1 \right)\ge 0\,\forall \,1\le x\le 4$  $\therefore {{I}_{1}}=\int_{1}^{4}{\left( x-1 \right)dx}=\left[ \dfrac{{{x}^{2}}}{2}-x \right]_{1}^{4}=\left[ 8-4-\dfrac{1}{2}+1 \right]=\dfrac{9}{2}\,\,\,...\left( 2 \right)\,$

Again, consider, ${{I}_{2}}=\int_{1}^{4}{\left| x-2 \right|dx}$, where $\left( x-2 \right)\ge 0\,\forall \,2\le x\le 4$ and $\left( x-2 \right)\le 0\,\forall \,1\le x\le 2$.

$\therefore {{I}_{2}}=\int_{1}^{2}{\left( 2-x \right)dx}+\int_{2}^{4}{\left( x-2 \right)dx}=\left[ 2x-\dfrac{{{x}^{2}}}{2} \right]_{1}^{4}+\left[ \dfrac{{{x}^{2}}}{2}-2x \right]_{2}^{4}$

$\Rightarrow {{I}_{2}}=\left[ 4-2-2+\dfrac{1}{2} \right]+\left[ 8-8-2+4 \right]=\dfrac{1}{2}+2=\dfrac{5}{2}\,\,\,...\left( 3 \right)\,$

Also, consider, ${{I}_{3}}=\int_{1}^{4}{\left| x-3 \right|dx}$, where $\left( x-3 \right)\ge 0\,\forall \,3\le x\le 4$ and $\left( x-3 \right)\le 0\,\forall \,1\le x\le 3$.

$\therefore {{I}_{3}}=\int_{1}^{3}{\left( 3-x \right)dx}+\int_{3}^{4}{\left( x-3 \right)dx}=\left[ 3-\dfrac{{{x}^{2}}}{2} \right]_{1}^{3}+\left[ \dfrac{{{x}^{2}}}{2}-3x \right]_{3}^{4}$

$\Rightarrow {{I}_{3}}=\left[ 9-\dfrac{9}{2}-3+\dfrac{1}{2} \right]+\left[ 8-12-\dfrac{9}{2}+9 \right]=2+\dfrac{1}{2}=\dfrac{5}{2}\,\,\,...\left( 4 \right)\,$

Now, from equations $\left( 1 \right)$, $\left( 2 \right)$, $\left( 3 \right)$ and $\left( 4 \right)$ it can be obtained that, 

$I=\dfrac{9}{2}+\dfrac{5}{2}+\dfrac{5}{2}=\dfrac{19}{2}$

$\Rightarrow 2I=\pi \int_{0}^{\pi }{\dfrac{\sin x+1-1}{1+\sin x}dx}=\pi \int_{0}^{\pi }{dx}-\pi \int_{0}^{\pi }{\dfrac{1}{1+\sin x}dx}=\pi \left[ x \right]_{0}^{\pi }-\pi \int_{0}^{\pi }{\dfrac{1-\sin x}{{{\cos }^{2}}x}dx}$

$\Rightarrow 2I=\pi \left[ x \right]_{0}^{\pi }-\pi \int_{0}^{\pi }{\left( {{\sec }^{2}}x-\tan x\sec x \right)dx}={{\pi }^{2}}-\pi \left[ \tan x-\sec x \right]_{0}^{\pi }$

$\Rightarrow 2I={{\pi }^{2}}-\pi \left[ 0-\left( -1 \right)-0+1 \right]={{\pi }^{2}}-2\pi $

$\Rightarrow I=\dfrac{\pi \left( \pi -2 \right)}{2}$


Prove the following (Exercises 32 to 37)

32. $\int_{\text{1}}^{\text{3}}{\dfrac{\text{dx}}{{{\text{x}}^{\text{2}}}\left( \text{x+1} \right)}}\text{=}\dfrac{\text{2}}{\text{3}}\text{+log}\dfrac{\text{2}}{\text{3}}$.

Ans: The given equation is, $\int_{1}^{3}{\dfrac{dx}{{{x}^{2}}\left( x+1 \right)}}=\dfrac{2}{3}+\log \dfrac{2}{3}$. 

Assume, $\int_{1}^{3}{\dfrac{dx}{{{x}^{2}}\left( x+1 \right)}}$ 

Now consider it as shown below,

$\therefore \dfrac{1}{{{x}^{2}}\left( x+1 \right)}=\dfrac{A}{x}+\dfrac{B}{{{x}^{2}}}+\dfrac{C}{\left( x+1 \right)}\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$

$\Rightarrow 1=Ax\left( x+1 \right)+B\left( x+1 \right)+C\left( {{x}^{2}} \right)$

$\Rightarrow 1=A{{x}^{2}}+Ax+Bx+B+C{{x}^{2}}$

On equating the coefficients of ${{x}^{2}},\,x$ and constant term, it can be obtained that,  

$A+C=0\,\,\,...\left( 2 \right)$ 

$A+B=0\,\,\,...\left( 3 \right)$

$B=1\,\,\,...\left( 4 \right)$

And on solving these equations, the values of $A,\,B,\,C$ can be obtained as,

$A=-1,\,B=1,\,C=1$ respectively.

Now, from equation $\left( 1 \right)$ it can be clearly obtained that,

$I=\int_{1}^{3}{\dfrac{dx}{{{x}^{2}}\left( x+1 \right)}}=\int_{1}^{3}{\left\{ \dfrac{-1}{x}+\dfrac{1}{{{x}^{2}}}+\dfrac{1}{\left( x+1 \right)} \right\}dx}$ 

$\Rightarrow I=\left[ -\log x-\dfrac{1}{x}+\log \left( x+1 \right) \right]_{1}^{3}=\left[ \log \left( \dfrac{x+1}{x} \right)-\dfrac{1}{x} \right]_{1}^{3}=\log \left( \dfrac{4}{3} \right)-\dfrac{1}{3}-\log \left( 2 \right)+1$

$\Rightarrow I=\log 4-\log 3-\log 2+\dfrac{2}{3}=\log 2-\log 3+\dfrac{2}{3}=\log \left( \dfrac{2}{3} \right)+\dfrac{2}{3}$

Henceforth, it can be proved.


33. $\int_{\text{0}}^{\text{4}}{\text{x}{{\text{e}}^{\text{x}}}\text{dx}}\text{=1}$.

Ans: The given equation is, $\int_{0}^{4}{x{{e}^{x}}dx}=1$. 

Assume, $I=\int_{0}^{4}{x{{e}^{x}}dx}$ 

Using integration by parts, it can be obtained that,

$I=x\int_{0}^{4}{{{e}^{x}}dx}-\int_{0}^{4}{\left\{ \left( \dfrac{d\left( x \right)}{dx} \right)\int{{{e}^{x}}} \right\}}=\left[ x{{e}^{x}} \right]_{0}^{1}-\left[ {{e}^{x}} \right]_{0}^{1}=e-e+1=1$ 

Henceforth, it can be proved.


34. $\int_{\text{1}}^{\text{-1}}{{{\text{x}}^{\text{17}}}\text{co}{{\text{s}}^{\text{4}}}\text{xdx}}\text{=0}$.

Ans: The given equation is, $\int_{1}^{-1}{{{x}^{17}}{{\cos }^{4}}xdx}=0$. 

Assume, $I=\int_{1}^{-1}{{{x}^{17}}{{\cos }^{4}}xdx}$ 

Now, consider $f(x)={{x}^{17}}{{\cos }^{4}}x$ 

$\therefore f\left( -x \right)={{\left( -x \right)}^{17}}{{\cos }^{4}}\left( -x \right)=-{{x}^{17}}{{\cos }^{4}}x=-f\left( x \right)$

$\Rightarrow f\left( x \right)$ is an odd function and henceforth it is known to us that when $f(x)$ is an odd function, then $\int_{-a}^{a}{f\left( x \right)dx}=0$. 

$\therefore I=\int_{1}^{-1}{{{x}^{17}}{{\cos }^{4}}xdx}=0$

Henceforth, it can be proved.


35. $\int_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{3}}}\text{xdx}}\text{=}\dfrac{\text{2}}{\text{3}}$.

Ans: The given equation is, $\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{3}}xdx}=\dfrac{2}{3}$. 

Assume, $I=\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{3}}xdx}$ 

$\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}x\sin xdx}=\int_{0}^{\dfrac{\pi }{2}}{\left( 1-{{\cos }^{2}}x \right)\sin xdx}=\int_{0}^{\dfrac{\pi }{2}}{\sin xdx}-\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}x\sin xdx}$

$\Rightarrow I=\left[ -\cos x \right]_{0}^{\dfrac{\pi }{2}}+\left[ \dfrac{co{{s}^{3}}x}{3} \right]_{0}^{\dfrac{\pi }{2}}=1-\dfrac{1}{3}=\dfrac{2}{3}$

Henceforth, it can be proved.


36. $\int_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{2ta}{{\text{n}}^{\text{3}}}\text{xdx}}\text{=1-log2}$.

Ans: The given equation is, $\int_{0}^{\dfrac{\pi }{4}}{2{{\tan }^{3}}xdx}=1-\log 2$. 

Assume, $\int_{0}^{\dfrac{\pi }{4}}{2{{\tan }^{3}}xdx}$ 

$\Rightarrow I=\int_{0}^{\dfrac{\pi }{4}}{2{{\tan }^{2}}x\tan xdx}=\int_{0}^{\dfrac{\pi }{4}}{\left( 1-{{\sec }^{2}}x \right)\tan xdx}=\int_{0}^{\dfrac{\pi }{4}}{\tan xdx}-\int_{0}^{\dfrac{\pi }{4}}{{{\sec }^{2}}x\tan xdx}$

$\Rightarrow I=2\left[ \dfrac{{{\tan }^{2}}x}{2} \right]_{0}^{\dfrac{\pi }{4}}+2\left[ \log \cos x \right]_{0}^{\dfrac{\pi }{4}}=1+2\left[ \log \cos \dfrac{\pi }{4}-\log \cos 0 \right]_{0}^{\dfrac{\pi }{2}}=1-\log 2-\log 1$

$\Rightarrow I=1-\log 2$

Henceforth, it can be proved.


37. $\int_{\text{0}}^{\text{1}}{\text{si}{{\text{n}}^{\text{-1}}}\text{xdx}}\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{-1}$.

Ans: The given equation is, $\int_{0}^{1}{{{\sin }^{-1}}xdx}=\dfrac{\pi }{2}-1$. 

Assume, $I=\int_{0}^{1}{{{\sin }^{-1}}xdx}$ 

$\Rightarrow I=\int_{0}^{1}{{{\sin }^{-1}}x.1dx}$

Using integration by parts, it can be obtained that,

$I=\left[ {{\sin }^{-1}}x.x \right]_{0}^{1}-\int_{0}^{1}{\dfrac{1}{\sqrt{1-{{x}^{2}}}}xdx}=\left[ x{{\sin }^{-1}}x \right]_{0}^{1}+\dfrac{1}{2}\int_{0}^{1}{\dfrac{\left( -2x \right)}{\sqrt{1-{{x}^{2}}}}dx}$ 

Now, substitute $1-{{x}^{2}}=t$ 

$\therefore \left( -2x \right)dx=dt$

And also when $x=0,\,t=1$ and when $x=1,\,t=0$.

$\therefore I=\left[ x{{\sin }^{-1}}x \right]_{0}^{1}+\dfrac{1}{2}\int_{0}^{1}{\dfrac{dt}{\sqrt{t}}}=\left[ x{{\sin }^{-1}}x \right]_{0}^{1}+\dfrac{1}{2}\left[ 2\sqrt{t} \right]_{1}^{0}={{\sin }^{-1}}1-\sqrt{1}=\dfrac{\pi }{2}-1$ Henceforth, it can be clearly proved.


Choose the correct answers in Exercises 38 to 40

38. $\int{\dfrac{\text{dx}}{{{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{-x}}}}}$ is equal to

A. $\text{ta}{{\text{n}}^{\text{-1}}}\left( {{\text{e}}^{\text{x}}} \right)\text{+C}$

B. $\text{ta}{{\text{n}}^{\text{-1}}}\left( {{\text{e}}^{\text{-x}}} \right)\text{+C}$ 

C. $\text{log}\left( {{\text{e}}^{\text{x}}}\text{-}{{\text{e}}^{\text{-x}}} \right)\text{+C}$ 

D. $\text{log}\left( {{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{-x}}} \right)\text{+C}$ 

Ans: The given expression is, $\int{\dfrac{dx}{{{e}^{x}}+{{e}^{-x}}}}$. 

Assume, $I=\int{\dfrac{dx}{{{e}^{x}}+{{e}^{-x}}}}$ 

Now, consider ${{e}^{x}}=t$ 

$\therefore {{e}^{x}}dx=dt$

$\therefore I=\int{\dfrac{dx}{{{e}^{x}}+{{e}^{-x}}}}=\int{\dfrac{1}{1+{{t}^{2}}}dt}=\int{{{\tan }^{-1}}\operatorname{t}dt}+C$, where $C$ is any arbitrary constant.

Hence, the correct answer is option (A). 


39. $\int{\dfrac{\text{cos2x}}{{{\left( \text{sinx+cosx} \right)}^{\text{2}}}}\text{dx}}$ is

A. $\dfrac{\text{-1}}{\text{sinx+cosx}}\text{+C}$

B. $\text{log}\left| \text{sinx+cosx} \right|\text{+C}$ 

C. $\text{log}\left| \text{sinx-cosx} \right|\text{+C}$ 

D. $\dfrac{\text{1}}{{{\left( \text{sinx+cosx} \right)}^{\text{2}}}}\text{+C}$ 

Ans: The given expression is, $\int{\dfrac{\cos 2x}{{{\left( \sin x+\cos x \right)}^{2}}}dx}$. 

Assume, $I=\int{\dfrac{\cos 2x}{{{\left( \sin x+\cos x \right)}^{2}}}dx}$ 

$\Rightarrow I=\int{\dfrac{(\sin x+\cos x)(\cos x-\sin x)}{{{\left( \sin x+\cos x \right)}^{2}}}dx}=\int{\dfrac{(\cos x-\sin x)}{\left( \sin x+\cos x \right)}dx}$

Now, substitute $\left( \sin x+\cos x \right)=t$ 

$\therefore (\cos x-\sin x)dx=dt$

$\therefore I=I=\int{\dfrac{1}{t}dt=\log \left| t \right|+C=\log \left| \cos x+\sin x \right|+C}$, where $C$ is any arbitrary constant.

Hence, the correct answer is option (B). 


40. If $\text{f}\left( \text{a+b-x} \right)\text{=f}\left( \text{x} \right)\text{,}\,$then $\int_{\text{a}}^{\text{b}}{\text{xf}\left( \text{x} \right)\text{dx}}$ is equal to

A. $\dfrac{\text{a+b}}{\text{2}}\int_{\text{a}}^{\text{b}}{\text{f}\left( \text{b-x} \right)\text{dx}}$

B. $\dfrac{\text{a+b}}{\text{2}}\int_{\text{a}}^{\text{b}}{\text{f}\left( \text{b+x} \right)\text{dx}}$ 

C. $\dfrac{\text{b-a}}{\text{2}}\int_{\text{a}}^{\text{b}}{\text{f}\left( \text{x} \right)\text{dx}}$ 

D. $\dfrac{\text{a+b}}{\text{2}}\int_{\text{a}}^{\text{b}}{\text{f}\left( \text{x} \right)\text{dx}}$ 

Ans: Assume, $I=\int_{a}^{b}{xf\left( x \right)dx}\,\,\,...\left( 1 \right)$ 

$\Rightarrow I=\int_{a}^{b}{\left( a+b-x \right)f\left( a+b-x \right)dx}\,\,\,\left[ \because \int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx} \right]$

$\Rightarrow I=\int_{a}^{b}{\left( a+b-x \right)f\left( x \right)dx}=\left( a+b \right)\int_{a}^{b}{f\left( x \right)dx}-I$   using $\left( 1 \right)$

$\Rightarrow 2I=\left( a+b \right)\int_{a}^{b}{f\left( x \right)dx}$

$\Rightarrow I=\dfrac{\left( a+b \right)}{2}\int_{a}^{b}{f\left( x \right)dx}$

Hence, the correct answer is option (D). 


Conclusion

The Class 12 Maths Chapter 7 Miscellaneous Exercise Solutions are important for understanding various concepts thoroughly. It contains a variety of problems that necessitate the use of multiple formulas and techniques. It's crucial to concentrate on understanding the fundamental principles behind each question rather than simply memorizing solutions. Keep in mind the importance of understanding the theory behind each concept, consistent practice, and referencing solved examples to effectively master this exercise.


Class 12 Maths Chapter 7: Exercises Breakdown

Exercise

Number of Questions

Exercise 7.1

22 Questions and Solutions

Exercise 7.2

39 Questions and Solutions

Exercise 7.3

24 Questions and Solutions

Exercise 7.4

25 Questions and Solutions

Exercise 7.5

23 Questions and Solutions

Exercise 7.6

24 Questions and Solutions

Exercise 7.7

11 Questions and Solutions

Exercise 7.8

22 Questions and Solutions

Exercise 7.9

10 Questions and Solutions

Exercise 7.10

21 Questions and Solutions


CBSE Class 12 Maths Chapter 7 Other Study Materials


Chapter-Specific NCERT Solutions for Class 12 Maths

Given below are the chapter-wise NCERT Solutions for Class 12 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


FAQs on NCERT Solutions for Class 12 Maths Miscellaneous Exercise Chapter 7 - Integrals

1. Can you provide some examples of problems covered in the Class 12 Maths Chapter 7 Miscellaneous Exercise Solution?

The miscellaneous exercise in Chapter 7 covers a wide range of integration techniques, including:

  • Indefinite and definite integrals (finding integrals of various functions using different methods)

  • Integration by parts (applying the parts formula to integrate functions involving the product of functions)

  • Integration by substitution (using U-substitution to simplify the integral)

  • Integration by partial fractions (decomposing rational functions into simpler fractions and integrating them)

  • Improper integrals (evaluating integrals with infinite limits.

2. Are there any tips for using the NCERT solutions effectively?

Here are some tips:

  • Solidify your foundation: Ensure you have a strong understanding of the concepts covered in the previous sections on indefinite and definite integrals, along with the different integration techniques.

  • Practice with different types of functions: Solve problems involving trigonometric, exponential, logarithmic, rational, and other function types to gain experience applying various integration techniques.

  • Focus on the approach: When referring to the NCERT solutions, pay close attention to the thought process behind choosing a technique and solving the integral, not just memorizing the final answer.

3. Where can I find additional resources for practising miscellaneous exercise problems?

  • The NCERT textbook itself might provide solutions to some problems within the miscellaneous exercise section.

  • Vedantu offers comprehensive solutions and explanations for these problems. You can find them through a web search using terms like "NCERT Solutions Class 12 Maths Chapter 7 Miscellaneous Exercise Integrals."

4. What are some Integral sample questions from miscellaneous exercise?

Here are 2 sample questions to illustrate the types of problems you might encounter:

  • Integrate: $∫ (x^2 + 3x + 2)/(x + 1)(x + 2) dx$ (This question requires using integration by partial fractions)

  • Evaluate: $∫ (e^x + sin x) dx$ (This question might involve using a combination of integration formulas)

5. What topics are covered in the Miscellaneous Exercise of Chapter 7?

The Miscellaneous Exercise includes a mix of questions from all the topics covered in Chapter 7, such as Integrals, Definite Integrals, and their applications.

6. How many questions are there in the Integration Miscellaneous Class 12?

The number of questions can vary depending on the edition of the NCERT textbook, but currently, we have 40 questions.

7. What is the importance of solving the Miscellaneous Exercise in Chapter 7?

Solving the Miscellaneous Exercise helps reinforce the concepts learned in the chapter and provides a comprehensive review of all topics, aiding in better understanding and preparation for exams.

8. Are the questions in the Miscellaneous Exercise more difficult than the regular exercises?

The questions in the Miscellaneous Exercise can be more challenging as they integrate various concepts from the entire chapter, providing a thorough practice.

9. How can I effectively solve the Integration Miscellaneous Class 12?

To effectively solve the Miscellaneous Exercise questions, ensure you have a clear understanding of all the topics, practice regularly, and refer to NCERT Solutions for step-by-step guidance.

10. How many questions from the Miscellaneous Exercise typically appear in the board exams?

While the exact number can vary, generally 1 to 2 questions appear from this exercise in the final board exam. These questions can be either short answer type or long answer type, depending on the complexity and integration of concepts., questions from the Miscellaneous Exercise are often included in the board exams as they provide a comprehensive review of the chapter.