Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable

ffImage
banner
widget title icon
Latest Updates

Class 8 Maths Chapter 2 Linear Equations in One Variable NCERT Solutions PDF Download

NCERT Solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable help students understand how to solve equations step by step using basic algebraic methods. This chapter is important because it introduces equation-solving skills that are used repeatedly in higher classes, and students often need guidance to apply the correct operations while simplifying equations.

toc-symbolTable of Content
toggle-arrow


The Class 8 Maths Chapter 2 solutions available on Vedantu are explained in a clear and structured manner, following the NCERT approach closely. By practising linear equations in one variable class 8 question answers on Vedantu, students can improve accuracy, clear common doubts, and build confidence for school exams and future mathematics chapters.


Access Exercise-wise NCERT Solutions for Chapter 2 Maths Class 8

Exercises Under NCERT Solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable

  • Exercise 2.1: This exercise contains 10 questions. This exercise covers how to solve equations with variables on both sides.

  • Exercise 2.2: This exercise contains 10 questions. This exercise deals with how to reduce equations into simpler form.


Access NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable

Exercise 2.1

1. Solve and check result: $3x=2x+18$

Ans: 

\[3x=2x+18\]

On Transposing \[2x\] to L.H.S, we obtain 

\[3x-2x=18\]

\[x=18\]

L.H.S \[=3x=3\times 18=54\]

R.H.S \[=2x+18=2\times 18+18=36+18=54\]

L.H.S. = R.H.S. 

Hence, the result obtained above is correct.


2. Solve and check result: $5t-3=3t-5$

Ans: 

\[5t-3=3t-5\]

On Transposing \[3t\] to L.H.S and \[-3\] to R.H.S, we obtain 

\[5t-3=-5-\left( -3 \right)\]

\[2t=-2\]

On dividing both sides by\[2\], we obtain 

\[t=-1\]

L.H.S \[=5t-3=5\times \left( -1 \right)-3=-8\]

R.H.S \[=3t-5=3\times \left( -1 \right)-5=-3-5=-8\]

L.H.S. = R.H.S. 

Hence, the result obtained above is correct. 


3. Solve and check result: $5x+9-5+3x$

Ans: 

\[5x+9=5+3x\]

On Transposing \[3x\] to L.H.S and \[9\] to R.H.S, we obtain 

\[5x-3x=5-9\]

\[2x=-4\]

On dividing both sides by\[2\], we obtain 

\[x=-2\]

L.H.S \[=5x+9=5\times \left( -2 \right)+9=-10+9=-1\]

R.H.S \[=5+3x=5+3\times \left( -2 \right)=5-6=-1\]

L.H.S. = R.H.S. 

Hence, the result obtained above is correct.


4. Solve and check result: $4z+3=6+2z$

Ans: 

\[4z+3=6+2z\]

On Transposing \[2z\] to L.H.S and \[3\] to R.H.S, we obtain 

\[4z-2z=6-3\]

\[2z=3\]

Dividing both sides by\[2\] , we obtain 

L.H.S \[=4z+3=4\times \left( \frac{3}{2} \right)+3=6+3=9\]

R.H.S \[=6+2z=6+2\times \left( \frac{3}{2} \right)=6+3=9\]

L.H.S. = R.H.S. 

Hence, the result obtained above is correct. 


5. Solve and check result: $2x-1=14-x$

Ans: 

\[2x-1=14-x\]

Transposing x to L.H.S and $1$ to R.H.S, we obtain 

\[2x+x=14+1\]

\[3x=15\]

Dividing both sides by \[3\], we obtain 

\[x=5\]

L.H.S \[=2x-1=2\times \left( 5 \right)-1=10-1=9\]

R.H.S \[=14-x=14-5=9\]

L.H.S. = R.H.S. 

Hence, the result obtained above is correct. 


6. Solve and check result: $8x+4=3\left( x-1 \right)+7$

Ans: 

\[8x+4=3\left( x-1 \right)+7\]

\[8x+4=3x-3+7\]

Transposing \[3x\] to L.H.S and $4$ to R.H.S, we obtain 

\[8x-3x=-3+7-4\]

\[5x=-7+7\]

\[x=0\]

L.H.S \[=8x+4=8\times \left( 0 \right)+4=4\]

R.H.S \[=3\left( x-1 \right)+7=3\left( 0-1 \right)+7=-3+7=4\]

L.H.S. = R.H.S. 

Hence, the result obtained above is correct. 


7. Solve and check result: $x=\frac{4}{5}\left( x+10 \right)$

Ans: 

\[x=\frac{4}{5}\left( x+10 \right)\]

Multiplying both sides by\[5\], we obtain 

\[5x=4\left( x+10 \right)\]

\[5x=4x+40\]

Transposing \[4x\] to L.H.S, we obtain 

\[5x=4x+40\]

\[x=40\]

L.H.S \[=x=40\]

R.H.S   \[=\frac{4}{5}\left( x+10 \right)=\frac{4}{5}\left( 40+10 \right)=\frac{4}{5}\times 50=40\]

L.H.S. = R.H.S. 

Hence, the result obtained above is correct. 


8. Solve and check result: $\frac{2x}{3}+1=\frac{7x}{15}+3$

Ans: 

\[\frac{2x}{3}+1=\frac{7x}{15}+3\]

Transposing \[\frac{7x}{15}\] to L.H.S and $1$ to R.H.S, we obtain 

\[\frac{2x}{3}-\frac{7x}{15}=3-1\]

\[\frac{5\times 2x-7x}{15}=2\]

\[\frac{3x}{15}=2\]

\[\frac{x}{5}=2\]

Multiplying both sides by\[5\] , we obtain 

\[x=10\]

L.H.S \[=\frac{2x}{3}+1=\frac{2\times 10}{3}+1=\frac{2\times 10+1\times 3}{3}=\frac{23}{3}\]

R.H.S\[=\frac{7x}{15}+3=\frac{7\times 10}{15}+3=\frac{7\times 2}{3}+3=\frac{14}{3}+3=\frac{14+3\times 3}{3}=\frac{23}{3}\] 

L.H.S. = R.H.S. 

Hence, the result obtained above is correct. 


9. Solve and check result: $2y+\frac{5}{3}=\frac{26}{3}-y$

Ans: 

\[2y+\frac{5}{3}=\frac{26}{3}-y\]

Transposing y to L.H.S and \[\frac{5}{3}\] to R.H.S, we obtain 

\[2y+y=\frac{26}{3}-\frac{5}{3}\]

\[3y=\frac{21}{3}=7\]

Dividing both sides by$3$, we obtain 

\[y=\frac{7}{3}\]

L.H.S \[=2y+\frac{5}{3}=2\times \frac{7}{3}+\frac{5}{3}=\frac{14}{3}+\frac{5}{3}=\frac{19}{3}\]

R.H.S = \[\frac{26}{3}-y=\frac{26}{3}-\frac{7}{3}=\frac{19}{3}\]

L.H.S. = R.H.S. Hence, the result obtained above is correct. 


10. Solve and check result: $3m=5m-\frac{8}{5}$

Ans: 

\[3m=5m-\frac{8}{5}\]

Transposing \[5m\] to L.H.S, we obtain 

\[3m-5m=-\frac{8}{5}\]

\[-2m=-\frac{8}{5}\]

Dividing both sides by\[-2\] , we obtain 

\[m=\frac{4}{5}\]

L.H.S \[=3m=3\times \frac{4}{5}=\frac{12}{5}\]

R.H.S \[5m-\frac{8}{5}=5\times \frac{4}{5}-\frac{8}{5}=\frac{12}{5}\]

L.H.S. = R.H.S. 

Hence, the result obtained above is correct.


Exercise 2.2

1. Solve the linear equation $\frac{x}{2}-\frac{1}{5}=\frac{x}{3}+\frac{1}{4}$

Ans: 

\[\frac{x}{2}-\frac{1}{5}=\frac{x}{3}+\frac{1}{4}\]

L.C.M. of the denominators, \[2,3,4,\text{and 5,}\]is 60 

Multiplying both sides by 60, we obtain 

\[60\left( \frac{x}{2}-\frac{1}{5} \right)=60\left( \frac{x}{3}+\frac{1}{4} \right)\]

\[\Rightarrow 30x-12=20x+15\] (Opening the brackets) 

\[\Rightarrow 30x-20x=15+12\]

\[\Rightarrow 10x=27\]

\[\Rightarrow x=\frac{27}{10}\]


2. Solve the linear equation$\frac{n}{2}-\frac{3n}{4}+\frac{5n}{6}=21$ 

Ans: 

\[\frac{n}{2}-\frac{3n}{4}+\frac{5n}{6}=21\]

L.C.M. of the denominators, \[2,4,\text{ and }6\text{ is }12\]. 

Multiplying both sides by\[12\], we obtain 

\[6n-9n+10n=252\]

\[\Rightarrow 7n=252\]

\[\Rightarrow n=\frac{252}{7}\]

\[\Rightarrow n=36\]


3. Solve the linear equation $x+7-\frac{8x}{3}=\frac{17}{6}-\frac{5x}{2}$

Ans: 

\[x+7-\frac{8x}{3}=\frac{17}{6}-\frac{5x}{2}\]

L.C.M. of the denominators, \[2,3,\text{ and }6,\text{is }6\]. 

Multiplying both sides by \[6\], we obtain 

\[6x+42-16x=17-15x\]

\[\Rightarrow 6x-16x+15x=17-42\]

\[\Rightarrow 5x=-25\]

\[\Rightarrow x=\frac{-25}{5}\]

\[\Rightarrow x=-5\]


4. Solve the linear equation $\frac{x-5}{3}=\frac{x-3}{5}$

Ans: 

\[\frac{x-5}{3}=\frac{x-3}{5}\]

L.C.M. of the denominators, \[3\text{ and }5,\text{ is }15\]. 

Multiplying both sides by\[15\], we obtain 

\[5\left( x-5 \right)=3\left( x-3 \right)\]

\[\Rightarrow 5x-25=3x-9\] (Opening the brackets) 

\[\Rightarrow 5x-3x=25-9\]

\[\Rightarrow 2x=16\]

\[\Rightarrow x=\frac{16}{2}\]

\[\Rightarrow x=8\]


5. Solve the linear equation $\frac{3t-2}{4}-\frac{2t+3}{3}=\frac{2}{3}-t$

Ans: 

\[\frac{3t-2}{4}-\frac{2t+3}{3}=\frac{2}{3}-t\]

L.C.M. of the denominators, \[3\text{ and }4,\text{is}\,12\]. 

Multiplying both sides by \[12\], we obtain 

\[3\left( 3t-2 \right)-4\left( 2t+3 \right)=8-12t\]

\[\Rightarrow 9t-6-8t-12=8-12t\] (Opening the brackets) 

\[\Rightarrow 9t-8t+12t=8+6+12\]

\[\Rightarrow 13t=26\]

\[\Rightarrow t=\frac{26}{13}\]

\[\Rightarrow t=2\]


6. Solve the linear equation$m-\frac{m-1}{2}=1-\frac{m-2}{3}$  

Ans: 

\[m-\frac{m-1}{2}=1-\frac{m-2}{3}\]  

L.C.M. of the denominators, \[2\text{ and }3,\text{ is}\,\text{ }6\]. 

Multiplying both sides by \[6\], we obtain 

\[6m-3\left( m-1 \right)=6-2\left( m-2 \right)\]

\[\Rightarrow 6m-3m+3=6-2m+4\] (Opening the brackets) 

\[\Rightarrow 6m-3m+2m=6+4-3\]

\[\Rightarrow 5m=7\]

\[\Rightarrow m=\frac{7}{5}\]


7. Simplify and solve the linear equation $3\left( t-3 \right)=5\left( 2t+1 \right)$

Ans: 

\[3\left( t-3 \right)=5\left( 2t+1 \right)\]

\[\Rightarrow 3t-9=10t+5\] (Opening the brackets) 

\[\Rightarrow -9-5=10t-3t\]

\[\Rightarrow -14=7t\]

\[\Rightarrow t=\frac{-14}{7}\]

\[\Rightarrow t=-2\]


8. Simplify and solve the linear equation$15\left( y-4 \right)-2\left( y-9 \right)+5\left( y+6 \right)=0$  

Ans:

\[15\left( y-4 \right)-2\left( y-9 \right)+5\left( y+6 \right)=0\]  

\[\Rightarrow 15y-60-2y+18+5y+30=0\] (Opening the brackets) 

\[\Rightarrow 18y-12=0\]

\[\Rightarrow 18y=12\]

\[\Rightarrow y=\frac{12}{8}=\frac{2}{3}\]


9.Simplify and solve the linear equation $3\left( 5z-7 \right)-2\left( 9z-11 \right)=4\left( 8z-13 \right)-17$   

Ans: 

\[3\left( 5z-7 \right)-2\left( 9z-11 \right)=4\left( 8z-13 \right)-17\]  

\[\Rightarrow 15z-21-18z+22=32z-52-17\] (Opening the brackets) 

\[\Rightarrow -3z+1=32z-69\]

\[\Rightarrow -3z-32z=-69-1\]

\[\Rightarrow -35z=-70\]

\[\Rightarrow z=\frac{70}{~35}=2\]


10. Simplify and solve the linear equation $0.25\left( 4f-3 \right)=0.05\left( 10f-9 \right)$

Ans: 

\[0.25\left( 4f-3 \right)=0.05\left( 10f-9 \right)\]

$\frac{1}{4}\left( 4f-3 \right)=\frac{1}{20}\left( 10f-9 \right)$

Multiplying both sides by\[20\], we obtain 

\[5\left( 4f-3 \right)=10f-9\]

\[\Rightarrow 20f-15=10f-9\] (Opening the brackets)

\[\Rightarrow 20f-10f=-9+15\]  

\[\Rightarrow 10f=6\]

\[\Rightarrow f=\frac{3}{5}=0.6\]


Overview of Deleted Syllabus for CBSE Class 8 Maths Linear Equations In One Variable 

Chapter

Dropped Topics

Linear Equations in One Variable

2.2 - Solving Equations which have linear expressions on one side and numbers on the other side

2.3 - Some Applications

2.5 - Some more applications

2.7 - Equations Reducible to the linear forms.



Class 8 Maths Chapter 2: Exercises Breakdown

Exercises

Number of Questions

Exercise 2.1

10 Questions with Solutions

Exercise 2.2

10 Questions with Solutions


Conclusion 

NCERT Maths Class 8 Solutions Vedantu's Linear Equations in One Variable provide a thorough understanding of this significant subject. Students can build a solid foundation in Linear Equations by concentrating on important ideas such as reducing equations into simpler forms, solving equations with variables on both sides. It's important to pay attention to the step-by-step solutions provided in the NCERT Solutions, as they help clarify concepts and reinforce problem-solving techniques. In previous years' exams, typically 2 to 3 questions have been asked from Ch 2 Maths Class 8. These questions often cover a variety of problem types, including basic equation solving, application-based word problems, and questions involving equations with variables on both sides. This pattern has been consistent across multiple exam papers and sources.


Other Study Material for CBSE Class 8 Maths Chapter 2


Chapter-Specific NCERT Solutions for Class 8 Maths

Given below are the chapter-wise NCERT Solutions for Class 8 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 8 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable

1. Are NCERT solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable available?

Yes, NCERT solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable are provided in a clear and structured format on Vedantu.

2. Can Linear Equations in One Variable Class 8 solutions be used for homework?

Yes, Linear Equations in One Variable Class 8 solutions available on Vedantu can be used for homework and assignment practice.

3. Do Class 8 Maths Chapter 2 solutions follow the NCERT textbook order?

Yes, Class 8 Maths Chapter 2 solutions for Linear Equations in One Variable on Vedantu follow the same sequence as mentioned in the NCERT textbook.

4. Are NCERT Class 8 Maths Chapter 2 answers suitable for school tests?

Yes, NCERT Class 8 Maths Chapter 2 solutions on Vedantu are useful for preparing for school tests and written assessments.

5. Can I download Linear Equations in One Variable Class 8 PDF solutions?

Yes, Linear Equations in One Variable Class 8 PDF solutions can be downloaded through the NCERT Solutions section on Vedantu.

6. Do the Class 8 Maths Chapter 2 Linear Equations in One Variable solutions show stepwise answers?

Yes, the Class 8 Maths Chapter 2 Linear Equations in One Variable solutions on Vedantu provide step-by-step answers to help students understand the method.

7. Are Class 8 Maths Chapter 2 Linear Equations in One Variable solutions updated to the latest syllabus?

Yes, the Class 8 Maths Chapter 2 Linear Equations in One Variable solutions on Vedantu are aligned with the latest NCERT and CBSE syllabus.

8. Can private candidates use Linear Equations in One Variable Class 8 solutions?

Yes, private candidates following the NCERT curriculum can use Linear Equations in One Variable Class 8 solutions available on Vedantu.

9. Are all exercise questions included in Class 8 Maths Chapter 2 solutions?

Yes, all exercise questions from Class 8 Maths Chapter 2 Linear Equations in One Variable are included in the NCERT Solutions on Vedantu.

10. Which website provides clear NCERT solutions for Linear Equations in One Variable Class 8 Maths?

Vedantu provides clear, well-structured NCERT solutions for Linear Equations in One Variable Class 8 Maths.