
\[2{\text{ }}moles\] of \[{N_2}\] are mixed with \[6{\text{ }}moles\] of \[{H_2}\] in closed vessel of one liter capacity. If \[50\% \] \[{N_2}\] is converted into \[N{H_3}\] at equilibrium, the value of \[{K_c}\] for the reaction,
\[{N_2}_{\left( g \right)} + 3{H_2}_{\left( g \right)} \rightleftharpoons 2N{H_3}_{\left( g \right)}\]
A.4/27
B.27/4
C.1/27
D.9
Answer
592.5k+ views
Hint: We have to calculate the equilibrium constant \[\left( {{K_c}} \right)\]of the balanced reaction. We can use the law of mass action to solve this question. Before that, we must know the equilibrium constant is the value of its reaction quotient at chemical equilibrium.
The equilibrium constant for a given reaction depends on temperature only. For endothermic reactions equilibrium constant will increase on raising the temperature while for exothermic reactions equilibrium constant will decrease on raising the temperature.
Complete step by step answer:
In the question, they have given
\[2{\text{ }}moles\]of \[{N_2}\]and \[6{\text{ }}moles\]of \[{H_2}\]initially
Therefore, \[50\% {\text{ }}of{\text{ }}2{\text{ }}mol{\text{ }}{N_2} = {\text{ }}2 \times \dfrac{{50}}{{100}} = 1mol\]
So, \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\]has been reacted up to equilibrium establishment and \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] left at equilibrium.
For reaction of \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] , we need \[3{\text{ }}mol{\text{ }}of{\text{ }}{H_2}\]according to stoichiometry of reaction.
\[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] will form\[2{\text{ }}mol{\text{ }}of{\text{ }}N{H_3}\].
Balanced chemical reaction:
\[{N_2}_{\left( g \right)} + 3{H_2}_{\left( g \right)} \rightleftharpoons 2N{H_3}_{\left( g \right)}\]
We can write the equilibrium constant by use of law of mass value as
\[{K_c}{\text{ }} = {\text{ }}\dfrac{{{{\left[ {N{H_3}} \right]}^2}}}{{\left[ {{N_2}} \right].{{\left[ {{H_2}} \right]}^3}}}\] ;
Here \[\left[ {N{H_3}} \right]\] = active mass or molar concentration of ammonia at equilibrium state.
\[\left[ {{N_2}} \right]\]= Active mass or molar concentration of Nitrogen gas at equilibrium state.
\[\left[ {{H_2}} \right]\]= Active mass or molar concentration of Hydrogen gas at equilibrium state.
We know the molar concentration of ammonia, nitrogen and hydrogen. Therefore, we can substitute the value in this equation
\[{K_c} = \dfrac{{{{(2)}^2}}}{{1x{{(3)}^3}}} = \dfrac{4}{{27}}\]
\[{K_c} = {\text{ }}4/27\]
Hence, the equilibrium constant for balanced reaction is \[{K_c} = {\text{ }}4/27\]
Note:
We are always using equilibrium molar concentrations in the expression of equilibrium constant\[\left( {{K_c}} \right)\]. Concentrations of reactants and products remain constant at equilibrium state. The value of the equilibrium constant does not depend on the volume, moles, concentration, pressure, etc. The equilibrium constant value for a reaction is the measurement of the yield of the reaction. The high value of the equilibrium constant shows the high yield of reaction and the low value of the equilibrium constant shows low yield of the reaction.
The equilibrium constant for a given reaction depends on temperature only. For endothermic reactions equilibrium constant will increase on raising the temperature while for exothermic reactions equilibrium constant will decrease on raising the temperature.
Complete step by step answer:
In the question, they have given
\[2{\text{ }}moles\]of \[{N_2}\]and \[6{\text{ }}moles\]of \[{H_2}\]initially
Therefore, \[50\% {\text{ }}of{\text{ }}2{\text{ }}mol{\text{ }}{N_2} = {\text{ }}2 \times \dfrac{{50}}{{100}} = 1mol\]
So, \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\]has been reacted up to equilibrium establishment and \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] left at equilibrium.
For reaction of \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] , we need \[3{\text{ }}mol{\text{ }}of{\text{ }}{H_2}\]according to stoichiometry of reaction.
\[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] will form\[2{\text{ }}mol{\text{ }}of{\text{ }}N{H_3}\].
Balanced chemical reaction:
\[{N_2}_{\left( g \right)} + 3{H_2}_{\left( g \right)} \rightleftharpoons 2N{H_3}_{\left( g \right)}\]
| Given | 2mol | 6mol | 0 |
| At equilibrium moles | 2-1 = 1 | 6-3=3 | 2 |
| Equilibrium conc. | 1/1 | 3/1 | 2/1 |
| 1M | 3M | 2M |
We can write the equilibrium constant by use of law of mass value as
\[{K_c}{\text{ }} = {\text{ }}\dfrac{{{{\left[ {N{H_3}} \right]}^2}}}{{\left[ {{N_2}} \right].{{\left[ {{H_2}} \right]}^3}}}\] ;
Here \[\left[ {N{H_3}} \right]\] = active mass or molar concentration of ammonia at equilibrium state.
\[\left[ {{N_2}} \right]\]= Active mass or molar concentration of Nitrogen gas at equilibrium state.
\[\left[ {{H_2}} \right]\]= Active mass or molar concentration of Hydrogen gas at equilibrium state.
We know the molar concentration of ammonia, nitrogen and hydrogen. Therefore, we can substitute the value in this equation
\[{K_c} = \dfrac{{{{(2)}^2}}}{{1x{{(3)}^3}}} = \dfrac{4}{{27}}\]
\[{K_c} = {\text{ }}4/27\]
Hence, the equilibrium constant for balanced reaction is \[{K_c} = {\text{ }}4/27\]
Note:
We are always using equilibrium molar concentrations in the expression of equilibrium constant\[\left( {{K_c}} \right)\]. Concentrations of reactants and products remain constant at equilibrium state. The value of the equilibrium constant does not depend on the volume, moles, concentration, pressure, etc. The equilibrium constant value for a reaction is the measurement of the yield of the reaction. The high value of the equilibrium constant shows the high yield of reaction and the low value of the equilibrium constant shows low yield of the reaction.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

