Answer
Verified
468.6k+ views
Hint: We have to calculate the equilibrium constant \[\left( {{K_c}} \right)\]of the balanced reaction. We can use the law of mass action to solve this question. Before that, we must know the equilibrium constant is the value of its reaction quotient at chemical equilibrium.
The equilibrium constant for a given reaction depends on temperature only. For endothermic reactions equilibrium constant will increase on raising the temperature while for exothermic reactions equilibrium constant will decrease on raising the temperature.
Complete step by step answer:
In the question, they have given
\[2{\text{ }}moles\]of \[{N_2}\]and \[6{\text{ }}moles\]of \[{H_2}\]initially
Therefore, \[50\% {\text{ }}of{\text{ }}2{\text{ }}mol{\text{ }}{N_2} = {\text{ }}2 \times \dfrac{{50}}{{100}} = 1mol\]
So, \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\]has been reacted up to equilibrium establishment and \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] left at equilibrium.
For reaction of \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] , we need \[3{\text{ }}mol{\text{ }}of{\text{ }}{H_2}\]according to stoichiometry of reaction.
\[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] will form\[2{\text{ }}mol{\text{ }}of{\text{ }}N{H_3}\].
Balanced chemical reaction:
\[{N_2}_{\left( g \right)} + 3{H_2}_{\left( g \right)} \rightleftharpoons 2N{H_3}_{\left( g \right)}\]
We can write the equilibrium constant by use of law of mass value as
\[{K_c}{\text{ }} = {\text{ }}\dfrac{{{{\left[ {N{H_3}} \right]}^2}}}{{\left[ {{N_2}} \right].{{\left[ {{H_2}} \right]}^3}}}\] ;
Here \[\left[ {N{H_3}} \right]\] = active mass or molar concentration of ammonia at equilibrium state.
\[\left[ {{N_2}} \right]\]= Active mass or molar concentration of Nitrogen gas at equilibrium state.
\[\left[ {{H_2}} \right]\]= Active mass or molar concentration of Hydrogen gas at equilibrium state.
We know the molar concentration of ammonia, nitrogen and hydrogen. Therefore, we can substitute the value in this equation
\[{K_c} = \dfrac{{{{(2)}^2}}}{{1x{{(3)}^3}}} = \dfrac{4}{{27}}\]
\[{K_c} = {\text{ }}4/27\]
Hence, the equilibrium constant for balanced reaction is \[{K_c} = {\text{ }}4/27\]
Note:
We are always using equilibrium molar concentrations in the expression of equilibrium constant\[\left( {{K_c}} \right)\]. Concentrations of reactants and products remain constant at equilibrium state. The value of the equilibrium constant does not depend on the volume, moles, concentration, pressure, etc. The equilibrium constant value for a reaction is the measurement of the yield of the reaction. The high value of the equilibrium constant shows the high yield of reaction and the low value of the equilibrium constant shows low yield of the reaction.
The equilibrium constant for a given reaction depends on temperature only. For endothermic reactions equilibrium constant will increase on raising the temperature while for exothermic reactions equilibrium constant will decrease on raising the temperature.
Complete step by step answer:
In the question, they have given
\[2{\text{ }}moles\]of \[{N_2}\]and \[6{\text{ }}moles\]of \[{H_2}\]initially
Therefore, \[50\% {\text{ }}of{\text{ }}2{\text{ }}mol{\text{ }}{N_2} = {\text{ }}2 \times \dfrac{{50}}{{100}} = 1mol\]
So, \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\]has been reacted up to equilibrium establishment and \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] left at equilibrium.
For reaction of \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] , we need \[3{\text{ }}mol{\text{ }}of{\text{ }}{H_2}\]according to stoichiometry of reaction.
\[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] will form\[2{\text{ }}mol{\text{ }}of{\text{ }}N{H_3}\].
Balanced chemical reaction:
\[{N_2}_{\left( g \right)} + 3{H_2}_{\left( g \right)} \rightleftharpoons 2N{H_3}_{\left( g \right)}\]
Given | 2mol | 6mol | 0 |
At equilibrium moles | 2-1 = 1 | 6-3=3 | 2 |
Equilibrium conc. | 1/1 | 3/1 | 2/1 |
1M | 3M | 2M |
We can write the equilibrium constant by use of law of mass value as
\[{K_c}{\text{ }} = {\text{ }}\dfrac{{{{\left[ {N{H_3}} \right]}^2}}}{{\left[ {{N_2}} \right].{{\left[ {{H_2}} \right]}^3}}}\] ;
Here \[\left[ {N{H_3}} \right]\] = active mass or molar concentration of ammonia at equilibrium state.
\[\left[ {{N_2}} \right]\]= Active mass or molar concentration of Nitrogen gas at equilibrium state.
\[\left[ {{H_2}} \right]\]= Active mass or molar concentration of Hydrogen gas at equilibrium state.
We know the molar concentration of ammonia, nitrogen and hydrogen. Therefore, we can substitute the value in this equation
\[{K_c} = \dfrac{{{{(2)}^2}}}{{1x{{(3)}^3}}} = \dfrac{4}{{27}}\]
\[{K_c} = {\text{ }}4/27\]
Hence, the equilibrium constant for balanced reaction is \[{K_c} = {\text{ }}4/27\]
Note:
We are always using equilibrium molar concentrations in the expression of equilibrium constant\[\left( {{K_c}} \right)\]. Concentrations of reactants and products remain constant at equilibrium state. The value of the equilibrium constant does not depend on the volume, moles, concentration, pressure, etc. The equilibrium constant value for a reaction is the measurement of the yield of the reaction. The high value of the equilibrium constant shows the high yield of reaction and the low value of the equilibrium constant shows low yield of the reaction.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE