When 3 is added to the denominator and 2 is subtracted from the numerator a fraction becomes $\dfrac{1}{4}$. And when 6 is added to the numerator and the denominator is multiplied by 3, it becomes $\dfrac{2}{3}$. Find the fraction.
Answer
Verified
498k+ views
Hint- Here we will proceed by assuming the numerator and denominator be x and y respectively. Then we will use given conditions to form linear equations in 2 variables using a substitution method so that we will get the required numerator and denominator.
Complete step-by-step solution -
Let the numerator be $x$
And let the denominator be $y$
Now applying first condition i.e. When 3 is added to the denominator and 2 is subtracted from the numerator a fraction becomes $\dfrac{1}{4}$,
We get-
$\dfrac{{x - 2}}{{y + 3}} = \dfrac{1}{4}$
$\Rightarrow 4\left( {x - 2} \right) = \left( {y + 3} \right)$
$\Rightarrow 4x – 8 = y + 3$
$\Rightarrow 4x – 11 = y $………… (1)
And applying second condition i.e. when 6 is added to numerator and the denominator is multiplied by 3, it becomes $\dfrac{2}{3}$ ,
We get-
$\dfrac{{x + 6}}{{3y}} = \dfrac{2}{3}$
Solving equation 1 and equation 2,
$\Rightarrow \dfrac{{3\left( {x + 6} \right)}}{3} = 2y $
$\Rightarrow x + 6 = 2y $…………… (3)
Now put value of equation 1 in equation 3,
We get-
$ x + 6 = 2(4x – 11) $
$\Rightarrow x + 6 = 8x – 22 $
$\Rightarrow 6 + 22 = 8x – 22 $
$\Rightarrow 6 + 22 = 8x – x $
$\Rightarrow 28 = 7x $
$\Rightarrow x = 4 $
Now substituting the value of x in equation 1,
We get-
$\Rightarrow y = 4 (4) – 11 $
$\Rightarrow y = 5 $
This implies-
Required fraction $ = \dfrac{x}{y} = \dfrac{4}{5}$
Note- While solving this question, we can assume any variables instead of x and y. As here we used a substitution method to solve these linear equations in 2 variables, we can also solve these linear equations in 2 variables using elimination method.
Complete step-by-step solution -
Let the numerator be $x$
And let the denominator be $y$
Now applying first condition i.e. When 3 is added to the denominator and 2 is subtracted from the numerator a fraction becomes $\dfrac{1}{4}$,
We get-
$\dfrac{{x - 2}}{{y + 3}} = \dfrac{1}{4}$
$\Rightarrow 4\left( {x - 2} \right) = \left( {y + 3} \right)$
$\Rightarrow 4x – 8 = y + 3$
$\Rightarrow 4x – 11 = y $………… (1)
And applying second condition i.e. when 6 is added to numerator and the denominator is multiplied by 3, it becomes $\dfrac{2}{3}$ ,
We get-
$\dfrac{{x + 6}}{{3y}} = \dfrac{2}{3}$
Solving equation 1 and equation 2,
$\Rightarrow \dfrac{{3\left( {x + 6} \right)}}{3} = 2y $
$\Rightarrow x + 6 = 2y $…………… (3)
Now put value of equation 1 in equation 3,
We get-
$ x + 6 = 2(4x – 11) $
$\Rightarrow x + 6 = 8x – 22 $
$\Rightarrow 6 + 22 = 8x – 22 $
$\Rightarrow 6 + 22 = 8x – x $
$\Rightarrow 28 = 7x $
$\Rightarrow x = 4 $
Now substituting the value of x in equation 1,
We get-
$\Rightarrow y = 4 (4) – 11 $
$\Rightarrow y = 5 $
This implies-
Required fraction $ = \dfrac{x}{y} = \dfrac{4}{5}$
Note- While solving this question, we can assume any variables instead of x and y. As here we used a substitution method to solve these linear equations in 2 variables, we can also solve these linear equations in 2 variables using elimination method.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE