Answer
Verified
386.4k+ views
Hint: We are given two equations in $a$ and $b$. And we are required to find the value of an expression which is also in terms of $a$ and $b$. For this, we can use two methods. We can individually find the value of both $a$ and $b$ by substituting the value of one in terms of another and putting it in the second equation. Or we can use the cubic identity and do this using the short trick.
Complete step by step answer:
We have$a+2b=10$
We need the involvement of the product $ab$ as well. So, we are going to use the following identity here:
For any two numbers $x$ and $y$, the following holds true:
$\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)$
So, we take cube of both sides of the equation below:
$a+2b=10$
$\implies \left(a+2b\right)^3=10^3=1000$
Using the identity, we open the left hand side to get:
$a^3+8b^3+3\times a\times 2b\left(a+2b\right)=1000$
$a^3+8b^3+6ab\times 10=1000$
This happens because the value of $a+2b$ is given to be 10.
Also, $ab=15$. We put this in the equation:
$a^3+8b^3+6\times 15\times 10=1000$
$a^3+8b^3=1000-900=100$
Hence, the value of the expression has been found out to be 100.
Note: Since we are given two equations in two variables, we can plug the value of one into another equation by expressing one in terms of another i.e. we can put $a=10-2b$ and then since $ab=15$, we would get:
$\left(10-2b\right)\times b=15$
$10b-2b^2-15=0$
$\implies 2b^2-10b+15=0$
And then we can solve this quadratic equation to obtain the value of $b$ and then back substitute it to find the value of $a$. But this becomes a really long process and also increases the chance of calculation mistakes. So, try to create identities in such questions so that you get the most accurate answer in the least amount of time.
Complete step by step answer:
We have$a+2b=10$
We need the involvement of the product $ab$ as well. So, we are going to use the following identity here:
For any two numbers $x$ and $y$, the following holds true:
$\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)$
So, we take cube of both sides of the equation below:
$a+2b=10$
$\implies \left(a+2b\right)^3=10^3=1000$
Using the identity, we open the left hand side to get:
$a^3+8b^3+3\times a\times 2b\left(a+2b\right)=1000$
$a^3+8b^3+6ab\times 10=1000$
This happens because the value of $a+2b$ is given to be 10.
Also, $ab=15$. We put this in the equation:
$a^3+8b^3+6\times 15\times 10=1000$
$a^3+8b^3=1000-900=100$
Hence, the value of the expression has been found out to be 100.
Note: Since we are given two equations in two variables, we can plug the value of one into another equation by expressing one in terms of another i.e. we can put $a=10-2b$ and then since $ab=15$, we would get:
$\left(10-2b\right)\times b=15$
$10b-2b^2-15=0$
$\implies 2b^2-10b+15=0$
And then we can solve this quadratic equation to obtain the value of $b$ and then back substitute it to find the value of $a$. But this becomes a really long process and also increases the chance of calculation mistakes. So, try to create identities in such questions so that you get the most accurate answer in the least amount of time.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE