![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A, B and C can reap a field in \[15\dfrac{3}{4}\] days; B, C and D in 14 days; C, D and A in 18 days; D, A and B in 21 days. In what time can A, B, C and D together reap it?
Answer
444.9k+ views
Hint: We first have to express the given equation as an equation with terms A, B, C and D.
We have to write the work done by A, B, C, and D with the given conditions by taking the reciprocal of the time taken. We then have to convert \[15\dfrac{3}{4}\] into a fraction. Therefore, the work done by them can be found by adding all the obtained equations. Add the RHS taking the LCM. Divide the whole equation by 3 and cancel out 3 from the numerator and denominator of the LHS. We get the value of A+B+C+D which is the work done by them. We need to take the reciprocal of work done to get the time taken by A, B, C, and D to reap the field.
Complete step by step solution:
According to the question, we are asked to find the total number of days it takes to reap together by A, B, C and D.
We have been given that A, B and C can reap a field in \[15\dfrac{3}{4}\] days.
Let us convert the statement into an equation, we get
Time taken by A, B and C to do the work are \[15\dfrac{3}{4}\] days.
We need to convert \[15\dfrac{3}{4}\] into a fraction for further calculation.
To convert a whole number \[a\dfrac{b}{c}\] into a fraction, we use the formula \[a\dfrac{b}{c}=\dfrac{ac+b}{c}\].
Here a=15, b=3 and c=4.
Therefore, \[15\dfrac{3}{4}=\dfrac{15\times 4+3}{4}\]
\[\Rightarrow 15\dfrac{3}{4}=\dfrac{60+3}{4}\]
Hence, we get \[15\dfrac{3}{4}=\dfrac{63}{4}\].
Time taken to complete the work by A, B and C is \[\dfrac{63}{4}\] days.
Therefore, the work done by A, B and C in one day is the reciprocal of the number of days.
Let us convert the statement into an equation, we get
\[A+B+C=\dfrac{4}{63}\] ---------------(1)
Also, we know that the time taken by B, C and D to reap is 14 days.
Therefore, the work done by B, C and D is
\[B+C+D=\dfrac{1}{14}\] ---------------(2)
Then, we have been given that the time taken by C, D and A to reap is 18 days.
Therefore, the work done by C, D and A is
\[C+D+A=\dfrac{1}{18}\] ---------------(3)
Similarly, we know that the time taken by D, A and B to reap is 21 days.
Therefore, the work done by D, A and B is
\[D+A+B=\dfrac{1}{21}\] ---------------(4)
Let us now add all the four equations (1), (2), (3) and (4).
We get the work done is
\[A+B+C+B+C+D+C+D+A+D+A+B=\dfrac{4}{63}+\dfrac{1}{14}+\dfrac{1}{18}+\dfrac{1}{21}\]
Let us now group all the similar terms.
\[\Rightarrow \left( A+A+A \right)+\left( B+B+B \right)+\left( C+C+C \right)+\left( D+D+D \right)=\dfrac{4}{63}+\dfrac{1}{14}+\dfrac{1}{18}+\dfrac{1}{21}\]
On further simplifications, we get
\[\Rightarrow 3A+3B+3C+3D=\dfrac{4}{63}+\dfrac{1}{14}+\dfrac{1}{18}+\dfrac{1}{21}\]
We find that 3 are common in the LHS of the equation. On taking 3 common from the equation, we get
\[3\left( A+B+C+D \right)=\dfrac{4}{63}+\dfrac{1}{14}+\dfrac{1}{18}+\dfrac{1}{21}\] ---------------(5)
Now, we have to solve the RHS of equation (5).
Let us take the LCM OF 63, 14, 18 and 21.
\[3\left| \!{\underline {\,
63,14,18,21 \,}} \right. \]
\[3\left| \!{\underline {\,
21,14,6,7 \,}} \right. \]
\[2\left| \!{\underline {\,
7,14,2,7 \,}} \right. \]
\[7\left| \!{\underline {\,
7,7,1,7 \,}} \right. \]
\[1\left| \!{\underline {\,
1,1,1,1 \,}} \right. \]
Therefore, LCM= \[3\times 3\times 2\times 7\]
LCM=126.
In equation (5), we get
\[3\left( A+B+C+D \right)=\dfrac{4\times 2+9+7+6}{126}\]
\[\Rightarrow 3\left( A+B+C+D \right)=\dfrac{8+9+7+6}{126}\]
\[\Rightarrow 3\left( A+B+C+D \right)=\dfrac{30}{126}\]
We can write the above equation as
\[3\left( A+B+C+D \right)=\dfrac{3\times 10}{3\times 42}\]
Since 3 are common in both the numerator and denominator of RHS, we can cancel 3.
\[\Rightarrow 3\left( A+B+C+D \right)=\dfrac{10}{42}\]
Now, on further simplification, we get
\[3\left( A+B+C+D \right)=\dfrac{2\times 5}{2\times 21}\]
Since 2 are common in both the numerator and denominator of RHS, we can cancel 2.
\[\Rightarrow 3\left( A+B+C+D \right)=\dfrac{5}{21}\]
Now, let us divide the whole equation by 3. We get
\[\dfrac{3\left( A+B+C+D \right)}{3}=\dfrac{5}{21\times 3}\]
\[\Rightarrow \dfrac{3\left( A+B+C+D \right)}{3}=\dfrac{5}{63}\]
We find that 3 are common in both the numerator and denominator of the LHS.
Let us cancel 3, we get
\[A+B+C+D=\dfrac{5}{63}\]
Therefore, the work done by A, B, C and D is \[\dfrac{5}{63}\].
The time taken by A, B, C and D is \[\dfrac{1}{\dfrac{5}{63}}=\dfrac{63}{5}\].
Hence, the time taken by A, B, C and D together reap the field is \[\dfrac{63}{5}\] days.
Note: We can further simplify the obtained answer by converting it into a mixed fraction.
We have to divide 63 by 5, that is the divisor is 5 and the dividend is 63.
\[5\overset{12}{\overline{\left){\begin{align}
& 63 \\
& \dfrac{5}{\begin{align}
& 13 \\
& \dfrac{10}{3} \\
\end{align}} \\
\end{align}}\right.}}\]
Here, the quotient is 12 and the remainder is 3.
We have to write the mixed fraction as \[quotient\dfrac{remainder}{divisor}\].
Therefore, \[\dfrac{63}{5}=12\dfrac{3}{5}\].
Hence, the time taken by A, B, C and D together to reap the field is \[12\dfrac{3}{5}\] days.
We have to write the work done by A, B, C, and D with the given conditions by taking the reciprocal of the time taken. We then have to convert \[15\dfrac{3}{4}\] into a fraction. Therefore, the work done by them can be found by adding all the obtained equations. Add the RHS taking the LCM. Divide the whole equation by 3 and cancel out 3 from the numerator and denominator of the LHS. We get the value of A+B+C+D which is the work done by them. We need to take the reciprocal of work done to get the time taken by A, B, C, and D to reap the field.
Complete step by step solution:
According to the question, we are asked to find the total number of days it takes to reap together by A, B, C and D.
We have been given that A, B and C can reap a field in \[15\dfrac{3}{4}\] days.
Let us convert the statement into an equation, we get
Time taken by A, B and C to do the work are \[15\dfrac{3}{4}\] days.
We need to convert \[15\dfrac{3}{4}\] into a fraction for further calculation.
To convert a whole number \[a\dfrac{b}{c}\] into a fraction, we use the formula \[a\dfrac{b}{c}=\dfrac{ac+b}{c}\].
Here a=15, b=3 and c=4.
Therefore, \[15\dfrac{3}{4}=\dfrac{15\times 4+3}{4}\]
\[\Rightarrow 15\dfrac{3}{4}=\dfrac{60+3}{4}\]
Hence, we get \[15\dfrac{3}{4}=\dfrac{63}{4}\].
Time taken to complete the work by A, B and C is \[\dfrac{63}{4}\] days.
Therefore, the work done by A, B and C in one day is the reciprocal of the number of days.
Let us convert the statement into an equation, we get
\[A+B+C=\dfrac{4}{63}\] ---------------(1)
Also, we know that the time taken by B, C and D to reap is 14 days.
Therefore, the work done by B, C and D is
\[B+C+D=\dfrac{1}{14}\] ---------------(2)
Then, we have been given that the time taken by C, D and A to reap is 18 days.
Therefore, the work done by C, D and A is
\[C+D+A=\dfrac{1}{18}\] ---------------(3)
Similarly, we know that the time taken by D, A and B to reap is 21 days.
Therefore, the work done by D, A and B is
\[D+A+B=\dfrac{1}{21}\] ---------------(4)
Let us now add all the four equations (1), (2), (3) and (4).
We get the work done is
\[A+B+C+B+C+D+C+D+A+D+A+B=\dfrac{4}{63}+\dfrac{1}{14}+\dfrac{1}{18}+\dfrac{1}{21}\]
Let us now group all the similar terms.
\[\Rightarrow \left( A+A+A \right)+\left( B+B+B \right)+\left( C+C+C \right)+\left( D+D+D \right)=\dfrac{4}{63}+\dfrac{1}{14}+\dfrac{1}{18}+\dfrac{1}{21}\]
On further simplifications, we get
\[\Rightarrow 3A+3B+3C+3D=\dfrac{4}{63}+\dfrac{1}{14}+\dfrac{1}{18}+\dfrac{1}{21}\]
We find that 3 are common in the LHS of the equation. On taking 3 common from the equation, we get
\[3\left( A+B+C+D \right)=\dfrac{4}{63}+\dfrac{1}{14}+\dfrac{1}{18}+\dfrac{1}{21}\] ---------------(5)
Now, we have to solve the RHS of equation (5).
Let us take the LCM OF 63, 14, 18 and 21.
\[3\left| \!{\underline {\,
63,14,18,21 \,}} \right. \]
\[3\left| \!{\underline {\,
21,14,6,7 \,}} \right. \]
\[2\left| \!{\underline {\,
7,14,2,7 \,}} \right. \]
\[7\left| \!{\underline {\,
7,7,1,7 \,}} \right. \]
\[1\left| \!{\underline {\,
1,1,1,1 \,}} \right. \]
Therefore, LCM= \[3\times 3\times 2\times 7\]
LCM=126.
In equation (5), we get
\[3\left( A+B+C+D \right)=\dfrac{4\times 2+9+7+6}{126}\]
\[\Rightarrow 3\left( A+B+C+D \right)=\dfrac{8+9+7+6}{126}\]
\[\Rightarrow 3\left( A+B+C+D \right)=\dfrac{30}{126}\]
We can write the above equation as
\[3\left( A+B+C+D \right)=\dfrac{3\times 10}{3\times 42}\]
Since 3 are common in both the numerator and denominator of RHS, we can cancel 3.
\[\Rightarrow 3\left( A+B+C+D \right)=\dfrac{10}{42}\]
Now, on further simplification, we get
\[3\left( A+B+C+D \right)=\dfrac{2\times 5}{2\times 21}\]
Since 2 are common in both the numerator and denominator of RHS, we can cancel 2.
\[\Rightarrow 3\left( A+B+C+D \right)=\dfrac{5}{21}\]
Now, let us divide the whole equation by 3. We get
\[\dfrac{3\left( A+B+C+D \right)}{3}=\dfrac{5}{21\times 3}\]
\[\Rightarrow \dfrac{3\left( A+B+C+D \right)}{3}=\dfrac{5}{63}\]
We find that 3 are common in both the numerator and denominator of the LHS.
Let us cancel 3, we get
\[A+B+C+D=\dfrac{5}{63}\]
Therefore, the work done by A, B, C and D is \[\dfrac{5}{63}\].
The time taken by A, B, C and D is \[\dfrac{1}{\dfrac{5}{63}}=\dfrac{63}{5}\].
Hence, the time taken by A, B, C and D together reap the field is \[\dfrac{63}{5}\] days.
Note: We can further simplify the obtained answer by converting it into a mixed fraction.
We have to divide 63 by 5, that is the divisor is 5 and the dividend is 63.
\[5\overset{12}{\overline{\left){\begin{align}
& 63 \\
& \dfrac{5}{\begin{align}
& 13 \\
& \dfrac{10}{3} \\
\end{align}} \\
\end{align}}\right.}}\]
Here, the quotient is 12 and the remainder is 3.
We have to write the mixed fraction as \[quotient\dfrac{remainder}{divisor}\].
Therefore, \[\dfrac{63}{5}=12\dfrac{3}{5}\].
Hence, the time taken by A, B, C and D together to reap the field is \[12\dfrac{3}{5}\] days.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you graph the function fx 4x class 9 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Name the states which share their boundary with Indias class 9 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Plant Cell and Animal Cell
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is pollution? How many types of pollution? Define it
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.
![arrow-right](/cdn/images/seo-templates/arrow-right.png)