Answer
Verified
449.4k+ views
Hint When the magnetic field is parallel to the magnetic dipole moment, the angle between them is zero, and when it is antiparallel, the angle is considered $180^\circ $. The potential energy of an object in a magnetic field is proportional to the magnetic dipole moment, the magnetic field and the angle between them. From here we can calculate the work done as the change in potential energy.
Formula used: In this solution we will be using the following formula;
$\Rightarrow U = - m \cdot B$ where $U$ is the potential energy of an object with a dipole moment of $m$in magnetic field, and $B$ is the magnetic flux density of the magnetic field.
$\Rightarrow W = \Delta U$ where $W$ is the work done and $\Delta U$ is change in potential energy of the system.
Complete step by step answer
An isolated magnet has a magnetic dipole moment due to orbiting of the electrons about the nucleus. Such magnet now placed in a magnetic field, will possess a potential energy given by
$\Rightarrow U = - m \cdot B = - mB\cos \theta $ where $m$ is the magnetic moment of the magnet, $B$ is the magnetic flux density of the magnetic field, and $\theta $ is the angle between the magnetic moment and the magnetic field.
Hence for the magnet in our question, we have
$\Rightarrow U = - MB\cos \theta $ since the magnetic moment and the magnetic field are parallel
Then
$\Rightarrow U = - MB\cos 0^\circ = - MB$
Work done in a field is defined as the change in potential energy
$\Rightarrow W = \Delta U = {U_f} - {U_i}$
Now for work done in aligning its magnetic moment opposite to the field, we have
$\Rightarrow W = - MB\cos 180^\circ - \left( { - MB} \right)$(since opposite the field means anti-parallel thus $\theta = 180^\circ $). Hence,
$\Rightarrow W = MB - \left( { - MB} \right) = MB + MB$
$\therefore W = 2MB$
To align the magnetic moment to become normal to the magnetic field we have that
$\Rightarrow W = - MB\cos 90^\circ - ( - MB)$
Hence, by calculation
$\Rightarrow W = 0 - \left( { - MB} \right)$
$\Rightarrow W = MB$.
Note
This is the ideal work done which only considers the field. In reality, work will be done to overcome reactive forces such as friction or air resistance, which will thus increase the total amount of work done to move the magnet.
Formula used: In this solution we will be using the following formula;
$\Rightarrow U = - m \cdot B$ where $U$ is the potential energy of an object with a dipole moment of $m$in magnetic field, and $B$ is the magnetic flux density of the magnetic field.
$\Rightarrow W = \Delta U$ where $W$ is the work done and $\Delta U$ is change in potential energy of the system.
Complete step by step answer
An isolated magnet has a magnetic dipole moment due to orbiting of the electrons about the nucleus. Such magnet now placed in a magnetic field, will possess a potential energy given by
$\Rightarrow U = - m \cdot B = - mB\cos \theta $ where $m$ is the magnetic moment of the magnet, $B$ is the magnetic flux density of the magnetic field, and $\theta $ is the angle between the magnetic moment and the magnetic field.
Hence for the magnet in our question, we have
$\Rightarrow U = - MB\cos \theta $ since the magnetic moment and the magnetic field are parallel
Then
$\Rightarrow U = - MB\cos 0^\circ = - MB$
Work done in a field is defined as the change in potential energy
$\Rightarrow W = \Delta U = {U_f} - {U_i}$
Now for work done in aligning its magnetic moment opposite to the field, we have
$\Rightarrow W = - MB\cos 180^\circ - \left( { - MB} \right)$(since opposite the field means anti-parallel thus $\theta = 180^\circ $). Hence,
$\Rightarrow W = MB - \left( { - MB} \right) = MB + MB$
$\therefore W = 2MB$
To align the magnetic moment to become normal to the magnetic field we have that
$\Rightarrow W = - MB\cos 90^\circ - ( - MB)$
Hence, by calculation
$\Rightarrow W = 0 - \left( { - MB} \right)$
$\Rightarrow W = MB$.
Note
This is the ideal work done which only considers the field. In reality, work will be done to overcome reactive forces such as friction or air resistance, which will thus increase the total amount of work done to move the magnet.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE