A boiler is in the form of a cylinder 2m long with hemispherical ends each of 2 metre diameter. Find the volume of the boiler.
Answer
Verified
498k+ views
Hint: In this question we have to find Volume of the boiler. First step is to draw a diagram. It will give us a clear picture of what to find out, considering the given quantity, break the diagram into 3 parts, two hemispheres and one cylinder. Now using the formula of volume of a cylinder and hemisphere you will get the final answer.
Complete step-by-step answer:
According to the question, a boiler is in the form of a cylinder 2 m long with hemispherical ends each of 2 metre diameter.
The height of the cylinder is h and the radius of the cylinder is r.
Height of the cylinder = h = 2 m
Diameter of the hemisphere = 2 m
As we know that Radius = $\dfrac{{{\rm{Diameter}}}}{2}$
∴ Radius of the hemisphere = ${\rm{r}} = \dfrac{{{\rm{Diameter}}}}{2} = \dfrac{2}{2} = 1{\rm{m}}$
Since at ends of cylinder hemisphere are attached,
So, Radius of the Cylinder = Radius of the hemisphere = r = 1m
From above diagram,
Total volume of the boiler = Volume of the cylindrical portion + Volume of the two hemispheres
We know that,
Volume of the cylinder = ${\rm{\pi }}{{\rm{r}}^2}{\rm{h}}$
Volume of the hemisphere = $\dfrac{{2{\rm{\;\pi }}{{\rm{r}}^3}}}{3}$
Now,
Total volume of the boiler = ${\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}{\rm{h\;}} + {\rm{\;}}2 \times \left( {\dfrac{{2{\rm{\;\pi }}{{\rm{r}}^3}}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}{\rm{h\;}} + \dfrac{4}{3}{\rm{\pi }}{{\rm{r}}^3}$
$ \Rightarrow {\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}\left( {{\rm{h\;}} + \dfrac{{4{\rm{r}}}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times {\rm{\;}}{1^2} \times \left( {{\rm{\;}}2{\rm{\;}} + \dfrac{4}{3} \times 1} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times \left( {\dfrac{{6 + 4}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times \dfrac{{10}}{3}{\rm{\;}} = \dfrac{{220}}{{21}}$
Therefore, Volume of the boiler is $\dfrac{{220}}{{21}}$ m³
Note: Whenever we face such types of problems the key concept is to draw the pictorial representation of the given problem and then split into parts such that we can use the formula of standard quantities in order to get the volume of the boiler.
Complete step-by-step answer:
According to the question, a boiler is in the form of a cylinder 2 m long with hemispherical ends each of 2 metre diameter.
The height of the cylinder is h and the radius of the cylinder is r.
Height of the cylinder = h = 2 m
Diameter of the hemisphere = 2 m
As we know that Radius = $\dfrac{{{\rm{Diameter}}}}{2}$
∴ Radius of the hemisphere = ${\rm{r}} = \dfrac{{{\rm{Diameter}}}}{2} = \dfrac{2}{2} = 1{\rm{m}}$
Since at ends of cylinder hemisphere are attached,
So, Radius of the Cylinder = Radius of the hemisphere = r = 1m
From above diagram,
Total volume of the boiler = Volume of the cylindrical portion + Volume of the two hemispheres
We know that,
Volume of the cylinder = ${\rm{\pi }}{{\rm{r}}^2}{\rm{h}}$
Volume of the hemisphere = $\dfrac{{2{\rm{\;\pi }}{{\rm{r}}^3}}}{3}$
Now,
Total volume of the boiler = ${\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}{\rm{h\;}} + {\rm{\;}}2 \times \left( {\dfrac{{2{\rm{\;\pi }}{{\rm{r}}^3}}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}{\rm{h\;}} + \dfrac{4}{3}{\rm{\pi }}{{\rm{r}}^3}$
$ \Rightarrow {\rm{V\;}} = {\rm{\;\pi }}{{\rm{r}}^2}\left( {{\rm{h\;}} + \dfrac{{4{\rm{r}}}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times {\rm{\;}}{1^2} \times \left( {{\rm{\;}}2{\rm{\;}} + \dfrac{4}{3} \times 1} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times \left( {\dfrac{{6 + 4}}{3}} \right)$
$ \Rightarrow {\rm{V\;}} = \dfrac{{22}}{7} \times \dfrac{{10}}{3}{\rm{\;}} = \dfrac{{220}}{{21}}$
Therefore, Volume of the boiler is $\dfrac{{220}}{{21}}$ m³
Note: Whenever we face such types of problems the key concept is to draw the pictorial representation of the given problem and then split into parts such that we can use the formula of standard quantities in order to get the volume of the boiler.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE