
A box contains 6 red balls and 2 black balls. Two balls are drawn at random from it without replacement. If x denotes the number of red balls drawn, then find $E\left( x \right)$
Answer
592.8k+ views
Hint: We can take the possible value for x and its probability. Then we can find $E\left( x \right)$ by taking the summation of the product of the random variable and its corresponding probability.
Complete step by step answer:
We have a box containing 2 black balls and 6 red balls. We are taking 2 balls from the box without replacement. We are given that ${\text{x}}$ is the number of red balls drawn from the box. As the box has 6 red balls and we are taking only 2 balls, x can take values 0, 1, and 2.
When \[x = 0\], we have no red balls. So, its probability is given by the number of ways of selecting 2 black balls from 2 black balls divided by number of ways of selecting 2 balls from 8 balls.
$P\left( 0 \right) = \dfrac{{{}^2{C_2}}}{{{}^8{C_2}}} = \dfrac{{\dfrac{{2!}}{{2!\left( 0 \right)!}}}}{{\dfrac{{8!}}{{2!\left( 6 \right)!}}}} = \dfrac{{1 \times 2}}{{8 \times 7}} = \dfrac{1}{{28}}$
When \[x = 1\], we have 1 red ball and 1 black ball. So, its probability is given by the number of ways of selecting 1 black ball from 2 black balls and 1 red ball from 6 red balls divided by the number of ways of selecting 2 balls from 8 balls.
\[P\left( 1 \right) = \dfrac{{{}^2{C_1} \times {}^6{C_1}}}{{{}^8{C_2}}} = \dfrac{{\dfrac{{2!}}{{1!\left( 1 \right)!}} \times \dfrac{{6!}}{{1!\left( 5 \right)!}}}}{{\dfrac{{8!}}{{2!\left( 6 \right)!}}}} = \dfrac{{2 \times 6 \times 2}}{{8 \times 7}} = \dfrac{3}{7}\]
When \[x = 2\], we have 2 red balls. So, its probability is given by the number of ways of selecting 2 red balls from 6 red balls divided by the number of ways of selecting 2 balls from 8 balls.
$P\left( 2 \right) = \dfrac{{{}^6{C_2}}}{{{}^8{C_2}}} = \dfrac{{\dfrac{{6!}}{{2!\left( 4 \right)!}}}}{{\dfrac{{8!}}{{2!\left( 6 \right)!}}}} = \dfrac{{6 \times 5}}{{8 \times 7}} = \dfrac{{15}}{{28}}$
The expected value for a random variable x is given by
\[
E\left( x \right) = \sum _{i = 1}^n{x_i} \times P\left( {{x_i}} \right) \\
= 0 \times P\left( 0 \right) + 1 \times P\left( 1 \right) + 2 \times P\left( 2 \right) \\
= 0 \times \dfrac{1}{{28}} + 1 \times \dfrac{3}{7} + 2 \times \dfrac{{15}}{{28}} \\
= \dfrac{6}{{14}} + \dfrac{{15}}{{14}} \\
= \dfrac{{21}}{{14}} \\
= \dfrac{3}{2} \\
\]
Thus, the required expected value is $\dfrac{3}{2}$.
Note: The concepts of random variables, probability and expected value are used in this problem. $E\left( x \right)$of a discrete random variable is given by \[E\left( x \right) = \sum _{i = 1}^n{x_i} \times P\left( {{x_i}} \right)\] and $E\left( x \right)$of a continuous random variable is given by \[E\left( x \right) = \int\limits_{ - \infty }^\infty {xP\left( x \right)} \].
Complete step by step answer:
We have a box containing 2 black balls and 6 red balls. We are taking 2 balls from the box without replacement. We are given that ${\text{x}}$ is the number of red balls drawn from the box. As the box has 6 red balls and we are taking only 2 balls, x can take values 0, 1, and 2.
When \[x = 0\], we have no red balls. So, its probability is given by the number of ways of selecting 2 black balls from 2 black balls divided by number of ways of selecting 2 balls from 8 balls.
$P\left( 0 \right) = \dfrac{{{}^2{C_2}}}{{{}^8{C_2}}} = \dfrac{{\dfrac{{2!}}{{2!\left( 0 \right)!}}}}{{\dfrac{{8!}}{{2!\left( 6 \right)!}}}} = \dfrac{{1 \times 2}}{{8 \times 7}} = \dfrac{1}{{28}}$
When \[x = 1\], we have 1 red ball and 1 black ball. So, its probability is given by the number of ways of selecting 1 black ball from 2 black balls and 1 red ball from 6 red balls divided by the number of ways of selecting 2 balls from 8 balls.
\[P\left( 1 \right) = \dfrac{{{}^2{C_1} \times {}^6{C_1}}}{{{}^8{C_2}}} = \dfrac{{\dfrac{{2!}}{{1!\left( 1 \right)!}} \times \dfrac{{6!}}{{1!\left( 5 \right)!}}}}{{\dfrac{{8!}}{{2!\left( 6 \right)!}}}} = \dfrac{{2 \times 6 \times 2}}{{8 \times 7}} = \dfrac{3}{7}\]
When \[x = 2\], we have 2 red balls. So, its probability is given by the number of ways of selecting 2 red balls from 6 red balls divided by the number of ways of selecting 2 balls from 8 balls.
$P\left( 2 \right) = \dfrac{{{}^6{C_2}}}{{{}^8{C_2}}} = \dfrac{{\dfrac{{6!}}{{2!\left( 4 \right)!}}}}{{\dfrac{{8!}}{{2!\left( 6 \right)!}}}} = \dfrac{{6 \times 5}}{{8 \times 7}} = \dfrac{{15}}{{28}}$
The expected value for a random variable x is given by
\[
E\left( x \right) = \sum _{i = 1}^n{x_i} \times P\left( {{x_i}} \right) \\
= 0 \times P\left( 0 \right) + 1 \times P\left( 1 \right) + 2 \times P\left( 2 \right) \\
= 0 \times \dfrac{1}{{28}} + 1 \times \dfrac{3}{7} + 2 \times \dfrac{{15}}{{28}} \\
= \dfrac{6}{{14}} + \dfrac{{15}}{{14}} \\
= \dfrac{{21}}{{14}} \\
= \dfrac{3}{2} \\
\]
Thus, the required expected value is $\dfrac{3}{2}$.
Note: The concepts of random variables, probability and expected value are used in this problem. $E\left( x \right)$of a discrete random variable is given by \[E\left( x \right) = \sum _{i = 1}^n{x_i} \times P\left( {{x_i}} \right)\] and $E\left( x \right)$of a continuous random variable is given by \[E\left( x \right) = \int\limits_{ - \infty }^\infty {xP\left( x \right)} \].
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

