Answer
Verified
441.3k+ views
Hint: In types of questions, we have to consider a variable for the number to be find, and from the data given in the question we will get two linear equations in the variable and we have to solve these equations by taking all variable terms to one side and all constants to one side, to get the value of the required variable.
Complete answer:
Given a burger shop sells two types of burger, A and B, and the selling price of burger A is Rs17, and of burger B is Rs13. Ingredient costs for burger A are Rs450 per week, and for burger B are Rs310 per week, and the shop sells an equal number of both types of burgers in one week.
Let us consider that the shop sells $x$ number of burger A and $x$ number of burger B as the shop sells an equal number of burgers in one week.
Now given that the selling price of burger A is Rs17, and the selling price of burger B is Rs13, and the costs of ingredients for burger A are given by Rs450 and the costs of ingredients for burger B are given by Rs310.
From the given data of the above question we can write,
The profit for burger A$ = 17x - 450$,
The profit for burger B$ = 13x - 310$,
Now let us assume that the profits for both the burgers are equal, then the equations should be equal, i.e.,
$17x - 450 = 13x - 310$
Now taking $x$ terms to one side we get,
$ \Rightarrow 17x - 13x = 450 - 310$
Now subtracting we get,
$ \Rightarrow 4x = 140$
Now dividing both sides with 4 we get,
$ \Rightarrow \dfrac{{4x}}{4} = \dfrac{{140}}{4}$
Now simplifying we get,
$ \Rightarrow x = 35$.
So, from the calculation when the number of burgers sold are equal to or greater than 35, then the profits of burger A will overtake the profits of burger B.
So, option C is correct i.e., After 35 burgers each, burger A profits will overtake burger B profits
After selling 35 burgers of each type i.e., burger A and burger B, the profits of burger A will overtake the profits of burger B.
Note:
The profit and loss problems will be mainly depends on the formulas related profit percentage and loss
percentage and calculation of profit and loss, some of the useful formulas are given here:
Profit = Selling price\[ - \]cost price,
Loss =Cost price\[ - \]selling price,
Profit%\[ = \dfrac{{S.P - C.P}}{{C.P}} \times 100\% \],
Loss%\[ = \dfrac{{C.P - S.P}}{{C.P}} \times 100\% \].
Complete answer:
Given a burger shop sells two types of burger, A and B, and the selling price of burger A is Rs17, and of burger B is Rs13. Ingredient costs for burger A are Rs450 per week, and for burger B are Rs310 per week, and the shop sells an equal number of both types of burgers in one week.
Let us consider that the shop sells $x$ number of burger A and $x$ number of burger B as the shop sells an equal number of burgers in one week.
Now given that the selling price of burger A is Rs17, and the selling price of burger B is Rs13, and the costs of ingredients for burger A are given by Rs450 and the costs of ingredients for burger B are given by Rs310.
From the given data of the above question we can write,
The profit for burger A$ = 17x - 450$,
The profit for burger B$ = 13x - 310$,
Now let us assume that the profits for both the burgers are equal, then the equations should be equal, i.e.,
$17x - 450 = 13x - 310$
Now taking $x$ terms to one side we get,
$ \Rightarrow 17x - 13x = 450 - 310$
Now subtracting we get,
$ \Rightarrow 4x = 140$
Now dividing both sides with 4 we get,
$ \Rightarrow \dfrac{{4x}}{4} = \dfrac{{140}}{4}$
Now simplifying we get,
$ \Rightarrow x = 35$.
So, from the calculation when the number of burgers sold are equal to or greater than 35, then the profits of burger A will overtake the profits of burger B.
So, option C is correct i.e., After 35 burgers each, burger A profits will overtake burger B profits
After selling 35 burgers of each type i.e., burger A and burger B, the profits of burger A will overtake the profits of burger B.
Note:
The profit and loss problems will be mainly depends on the formulas related profit percentage and loss
percentage and calculation of profit and loss, some of the useful formulas are given here:
Profit = Selling price\[ - \]cost price,
Loss =Cost price\[ - \]selling price,
Profit%\[ = \dfrac{{S.P - C.P}}{{C.P}} \times 100\% \],
Loss%\[ = \dfrac{{C.P - S.P}}{{C.P}} \times 100\% \].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE