A cell can be balanced against 110 cm and 100 cm of potentiometer wire, respectively with and without being short circuited through a resistance of \[10\,\Omega \]. Its internal resistance is
A. \[1\,\Omega \]
B. \[0.5\,\Omega \]
C. \[2\,\Omega \]
D. None
Answer
Verified
448.5k+ views
Hint: Express the current in the potentiometer wire in terms of emf of the cell and internal resistance. Recall the balance condition for the potentiometer. Substitute the emf of the cell and potential across the wire of the potentiometer in the balance condition to get the value of internal resistance.
Formula used:
Balance condition, \[\dfrac{E}{V} = \dfrac{{{l_1}}}{{{l_2}}}\]
Here, E is the emf of the cell, V is the potential across the wire of the potentiometer, \[{l_1}\] and \[{l_2}\] are the points on the wire where the potentiometer is balanced.
Complete step by step answer:
Let a cell of emf E is connected across the length of the potentiometer wire and the internal resistance of this potentiometer is r. when we switch on the circuit, the current I flows through the wire of the potentiometer. We can express the current in the potentiometer wire as follows,
\[I = \dfrac{E}{{R + r}}\]
\[ \Rightarrow E = I\left( {R + r} \right)\] …… (1)
This is the emf of the cell.
Now, the potential difference across the length of the potentiometer wire is can be expressed using Ohm’s law as,
\[V = IR\] …… (2)
Here, R is the resistance.
We know the balance condition for potentiometer,
\[\dfrac{E}{V} = \dfrac{{{l_1}}}{{{l_2}}}\]
Here, \[{l_1}\] and \[{l_2}\] are the points on the wire where the potentiometer is balanced.
Using equation (1) and (2) in the above equation, we get,
\[\dfrac{{I\left( {R + r} \right)}}{{IR}} = \dfrac{{{l_1}}}{{{l_2}}}\]
\[ \Rightarrow \dfrac{{R + r}}{R} = \dfrac{{{l_1}}}{{{l_2}}}\]
\[ \Rightarrow 1 + \dfrac{r}{R} = \dfrac{{{l_1}}}{{{l_2}}}\]
Substituting 110 cm for \[{l_1}\], 100 cm for \[{l_2}\] and \[10\,\Omega \] for R in the above equation, we get,
\[1 + \dfrac{r}{{10}} = \dfrac{{110}}{{100}}\]
\[ \Rightarrow \dfrac{r}{{10}} = 1.1 - 1\]
\[ \Rightarrow \dfrac{r}{{10}} = 0.1\]
\[ \therefore r = 1\,\Omega \]
Therefore, the internal resistance of the cell is \[1\,\Omega \].
So, the correct answer is option A.
Note:The internal resistance of the cell is negligible and in often cases we neglect the internal resistance of the cell if the cell provides a high supply. The internal resistance is the resistance provided by the electrolytic solution in the cell. In the closed circuit while determining the emf of the cell, the Ohm’s law should be expressed such that it has resistance which is the sum of resistance of the circuit and internal resistance.
Formula used:
Balance condition, \[\dfrac{E}{V} = \dfrac{{{l_1}}}{{{l_2}}}\]
Here, E is the emf of the cell, V is the potential across the wire of the potentiometer, \[{l_1}\] and \[{l_2}\] are the points on the wire where the potentiometer is balanced.
Complete step by step answer:
Let a cell of emf E is connected across the length of the potentiometer wire and the internal resistance of this potentiometer is r. when we switch on the circuit, the current I flows through the wire of the potentiometer. We can express the current in the potentiometer wire as follows,
\[I = \dfrac{E}{{R + r}}\]
\[ \Rightarrow E = I\left( {R + r} \right)\] …… (1)
This is the emf of the cell.
Now, the potential difference across the length of the potentiometer wire is can be expressed using Ohm’s law as,
\[V = IR\] …… (2)
Here, R is the resistance.
We know the balance condition for potentiometer,
\[\dfrac{E}{V} = \dfrac{{{l_1}}}{{{l_2}}}\]
Here, \[{l_1}\] and \[{l_2}\] are the points on the wire where the potentiometer is balanced.
Using equation (1) and (2) in the above equation, we get,
\[\dfrac{{I\left( {R + r} \right)}}{{IR}} = \dfrac{{{l_1}}}{{{l_2}}}\]
\[ \Rightarrow \dfrac{{R + r}}{R} = \dfrac{{{l_1}}}{{{l_2}}}\]
\[ \Rightarrow 1 + \dfrac{r}{R} = \dfrac{{{l_1}}}{{{l_2}}}\]
Substituting 110 cm for \[{l_1}\], 100 cm for \[{l_2}\] and \[10\,\Omega \] for R in the above equation, we get,
\[1 + \dfrac{r}{{10}} = \dfrac{{110}}{{100}}\]
\[ \Rightarrow \dfrac{r}{{10}} = 1.1 - 1\]
\[ \Rightarrow \dfrac{r}{{10}} = 0.1\]
\[ \therefore r = 1\,\Omega \]
Therefore, the internal resistance of the cell is \[1\,\Omega \].
So, the correct answer is option A.
Note:The internal resistance of the cell is negligible and in often cases we neglect the internal resistance of the cell if the cell provides a high supply. The internal resistance is the resistance provided by the electrolytic solution in the cell. In the closed circuit while determining the emf of the cell, the Ohm’s law should be expressed such that it has resistance which is the sum of resistance of the circuit and internal resistance.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Why is the cell called the structural and functional class 12 biology CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE