Answer
Verified
397.8k+ views
Hint: In this problem, we are given that a circle circumscribed a rectangle with sides 16cm and 12cm, we have to find the area of the circle. We can first draw a suitable diagram for the given measurements. We know that area of the circle formula is \[\pi {{r}^{2}}\], where r is the radius. We can find the value of r where We can see that the diagonal of the rectangle will be the diameter of the circle. Using Pythagoras theorem we can find the radius value and substitute in the area formula to get the area value.
Complete step by step answer:
Here we have to find the area of a circle which circumscribes a rectangle with sides 16 cm and 12cm.
We can now draw the diagram.
We can see that the diagonal of the rectangle = the diameter of the circle = 2r.
We can now find the diagonal of the rectangle using the Pythagoras formula,
\[\Rightarrow {{\left( 2r \right)}^{2}}={{\left( 16 \right)}^{2}}+{{\left( 12 \right)}^{2}}\]
We can now simplify the above step, we get
\[\begin{align}
& \Rightarrow 4{{r}^{2}}=256+144=400 \\
& \Rightarrow {{r}^{2}}=100 \\
& \Rightarrow r=10cm \\
\end{align}\]
The radius of the circle is 10cm.
We can now substitute the radius in the formula for area of circle \[\pi {{r}^{2}}\], we get
Area of the circle = \[\pi \times {{\left( 10 \right)}^{2}}=100\pi c{{m}^{2}}\].
So, the correct answer is “Option C”.
Note: We should know that if a circle circumscribes a rectangle, then the diameter of the circle is the diagonal of the rectangle, where the diagonal of the rectangle = the diameter of the circle = 2r. We should remember that, the formula to find the area of the circle is \[\pi {{r}^{2}}\].
Complete step by step answer:
Here we have to find the area of a circle which circumscribes a rectangle with sides 16 cm and 12cm.
We can now draw the diagram.
We can see that the diagonal of the rectangle = the diameter of the circle = 2r.
We can now find the diagonal of the rectangle using the Pythagoras formula,
\[\Rightarrow {{\left( 2r \right)}^{2}}={{\left( 16 \right)}^{2}}+{{\left( 12 \right)}^{2}}\]
We can now simplify the above step, we get
\[\begin{align}
& \Rightarrow 4{{r}^{2}}=256+144=400 \\
& \Rightarrow {{r}^{2}}=100 \\
& \Rightarrow r=10cm \\
\end{align}\]
The radius of the circle is 10cm.
We can now substitute the radius in the formula for area of circle \[\pi {{r}^{2}}\], we get
Area of the circle = \[\pi \times {{\left( 10 \right)}^{2}}=100\pi c{{m}^{2}}\].
So, the correct answer is “Option C”.
Note: We should know that if a circle circumscribes a rectangle, then the diameter of the circle is the diagonal of the rectangle, where the diagonal of the rectangle = the diameter of the circle = 2r. We should remember that, the formula to find the area of the circle is \[\pi {{r}^{2}}\].
Recently Updated Pages
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Which one of the following is a leguminous crop A Pulses class 10 social science CBSE
Fill in the blank with the most appropriate word She class 10 english CBSE
Mention the aim of the forest conservation act class 10 social science CBSE