
A circuit consists of a resistance R connected to n similar cells. If the current in the circuit is the same whether the cells are connected in series or in parallel then the internal resistance r of each cell is given by
A. \[r = \dfrac{R}{n}\]
B. \[r = nR\]
C. \[r = R\]
D. \[r = \dfrac{1}{R}\]
Answer
593.7k+ views
Hint: For n cells with internal resistance r connected in series,
${E_{eq}} = nE$ and ${r_{eq}} = nr$
For n cells with internal resistance r connected in parallel,
${E_{eq}} = E$ and ${r_{eq}} = \dfrac{r}{n}$
Here ${E_{eq}}$ is the equivalent emf of all the battery sources and ${r_{eq}}$ is the equivalent internal resistance.
Current for both the connection is given by $I = \dfrac{{{E_{eq}}}}{{{R_{eq}}}}$ where ${R_{eq}}$ is the total equivalent resistance including internal and external resistance.
Complete step by step solution:
First, we have to calculate the equivalent EMF and total equivalent resistance for the type of connections (series and parallel).
For n cells with internal resistance r connected in series,
${E_{eq}}$ is the algebraic sum of all the EMFs i.e. ${E_{eq}} = nE$
As all the internal resistances are also in series, so the equivalent internal resistance will be ${r_{eq}} = nr$
Now as the equivalent internal resistance and the external resistance R are in series connection, so the total equivalent resistance for the circuit will be given as, ${R_{eq}} = R + {r_{eq}} = R + nr$
Current for both the connection is given by $I = \dfrac{{{E_{eq}}}}{{{R_{eq}}}}$ where ${R_{eq}}$ is the total equivalent resistance including internal and external resistance.
Let current through this series connection be ${I_s}$
So, ${I_s} = \dfrac{{nE}}{{R + nr}}$
Now, for n cells with internal resistance r connected in parallel,
${E_{eq}}$ in the parallel connection will be ${E_{eq}} = E$ as the EMF will remain the same.
As all the internal resistances are also in parallel, so the equivalent internal resistance will be ${r_{eq}} = \dfrac{r}{n}$
Now as the equivalent internal resistance and the external resistance R are in series connection, so the total equivalent resistance for the circuit will be given as, ${R_{eq}} = R + {r_{eq}} = R + \dfrac{r}{n}$
Current for both the connection is given by $I = \dfrac{{{E_{eq}}}}{{{R_{eq}}}}$ where ${R_{eq}}$ is the total equivalent resistance including internal and external resistance.
Let current through this series connection be ${I_p}$
So, ${I_p} = \dfrac{E}{{\left( {R + \dfrac{r}{n}} \right)}}$
Now, as given in the question that the current in the circuit is the same whether the cells are connected in series or in parallel which means ${I_s} = {I_p}$
So, $\dfrac{{nE}}{{R + nr}} = \dfrac{E}{{\left( {R + \dfrac{r}{n}} \right)}}$
On further solving we have,
$\dfrac{{nE}}{{R + nr}} = \dfrac{{nE}}{{nR + r}}$
Or we can say, $R + nr = nR + r$
On simplifying we get,
$r = R$
$\therefore$The internal resistance r is equal to $R$. Hence, option (C) is the correct answer.
Note:
While calculating the overall equivalent resistance after calculating equivalent internal resistance, remember that ${r_{eq}}$ and the external resistance R will be in series.
Remember that the equivalent EMF for the parallel connection will remain as original.
${E_{eq}} = nE$ and ${r_{eq}} = nr$
For n cells with internal resistance r connected in parallel,
${E_{eq}} = E$ and ${r_{eq}} = \dfrac{r}{n}$
Here ${E_{eq}}$ is the equivalent emf of all the battery sources and ${r_{eq}}$ is the equivalent internal resistance.
Current for both the connection is given by $I = \dfrac{{{E_{eq}}}}{{{R_{eq}}}}$ where ${R_{eq}}$ is the total equivalent resistance including internal and external resistance.
Complete step by step solution:
First, we have to calculate the equivalent EMF and total equivalent resistance for the type of connections (series and parallel).
For n cells with internal resistance r connected in series,
${E_{eq}}$ is the algebraic sum of all the EMFs i.e. ${E_{eq}} = nE$
As all the internal resistances are also in series, so the equivalent internal resistance will be ${r_{eq}} = nr$
Now as the equivalent internal resistance and the external resistance R are in series connection, so the total equivalent resistance for the circuit will be given as, ${R_{eq}} = R + {r_{eq}} = R + nr$
Current for both the connection is given by $I = \dfrac{{{E_{eq}}}}{{{R_{eq}}}}$ where ${R_{eq}}$ is the total equivalent resistance including internal and external resistance.
Let current through this series connection be ${I_s}$
So, ${I_s} = \dfrac{{nE}}{{R + nr}}$
Now, for n cells with internal resistance r connected in parallel,
${E_{eq}}$ in the parallel connection will be ${E_{eq}} = E$ as the EMF will remain the same.
As all the internal resistances are also in parallel, so the equivalent internal resistance will be ${r_{eq}} = \dfrac{r}{n}$
Now as the equivalent internal resistance and the external resistance R are in series connection, so the total equivalent resistance for the circuit will be given as, ${R_{eq}} = R + {r_{eq}} = R + \dfrac{r}{n}$
Current for both the connection is given by $I = \dfrac{{{E_{eq}}}}{{{R_{eq}}}}$ where ${R_{eq}}$ is the total equivalent resistance including internal and external resistance.
Let current through this series connection be ${I_p}$
So, ${I_p} = \dfrac{E}{{\left( {R + \dfrac{r}{n}} \right)}}$
Now, as given in the question that the current in the circuit is the same whether the cells are connected in series or in parallel which means ${I_s} = {I_p}$
So, $\dfrac{{nE}}{{R + nr}} = \dfrac{E}{{\left( {R + \dfrac{r}{n}} \right)}}$
On further solving we have,
$\dfrac{{nE}}{{R + nr}} = \dfrac{{nE}}{{nR + r}}$
Or we can say, $R + nr = nR + r$
On simplifying we get,
$r = R$
$\therefore$The internal resistance r is equal to $R$. Hence, option (C) is the correct answer.
Note:
While calculating the overall equivalent resistance after calculating equivalent internal resistance, remember that ${r_{eq}}$ and the external resistance R will be in series.
Remember that the equivalent EMF for the parallel connection will remain as original.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

