Answer
Verified
380.4k+ views
Hint: First, we need to analyze the given information carefully so that we are able to solve the problem. Here, we are given a probability consisting of an experiment. The experiment is tossing a coin $ 100 $ times. The given outcome is getting heads $ 20 $ times. We are asked to calculate the probability for the event having heads only.
We need to use the formula of the probability of an event in this question so that we can easily obtain the desired result.
Formula to be used:
The formula to calculate the probability of an event is as follows.
The probability of an event (say A), $ P\left( A \right) = \dfrac{{number{\text{ }}of{\text{ }}favorable{\text{ }}outcomes}}{{total{\text{ }}number{\text{ }}of{\text{ }}outcomes}} $
Complete step by step answer:
The given experiment is tossing a coin $ 100 $ times and the outcome is getting head $ 20 $ times.
While tossing a coin, we get both head and tail.
Since the coin is tossed for $ 100 $ times, the total number of outcomes will be $ 100 $ .
Since we get head $ 20 $ times, the number of favorable outcomes will be $ 20 $ .
We are asked to calculate the probability of getting head.
Let $ P\left( H \right) $ be the probability of getting head.
Now, we shall use the probability of an event formula.
The formula to calculate the probability of an event is as follows
The probability of an event (say A), $ P\left( A \right) = \dfrac{{number{\text{ }}of{\text{ }}favorable{\text{ }}outcomes}}{{total{\text{ }}number{\text{ }}of{\text{ }}outcomes}} $
Hence, the probability of getting head, $ P\left( H \right) = \dfrac{{number{\text{ }}of{\text{ }}favorable{\text{ }}outcomes}}{{total{\text{ }}number{\text{ }}of{\text{ }}outcomes}} $
$ \Rightarrow P\left( H \right) = \dfrac{{20}}{{100}} $
$ \Rightarrow P\left( H \right) = \dfrac{1}{5} $
$ \Rightarrow P\left( H \right) = 0.2 $
Therefore, the probability of getting head is $ 0.2 $
So, the correct answer is “Option a”.
Note: The probability of an event is nothing but the ratio of the number of favorable outcomes and the total number of outcomes. This is given by the formula $ P\left( A \right) = \dfrac{{number{\text{ }}of{\text{ }}favorable{\text{ }}outcomes}}{{total{\text{ }}number{\text{ }}of{\text{ }}outcomes}} $ .
Hence, we got the required probability of getting head.
We need to use the formula of the probability of an event in this question so that we can easily obtain the desired result.
Formula to be used:
The formula to calculate the probability of an event is as follows.
The probability of an event (say A), $ P\left( A \right) = \dfrac{{number{\text{ }}of{\text{ }}favorable{\text{ }}outcomes}}{{total{\text{ }}number{\text{ }}of{\text{ }}outcomes}} $
Complete step by step answer:
The given experiment is tossing a coin $ 100 $ times and the outcome is getting head $ 20 $ times.
While tossing a coin, we get both head and tail.
Since the coin is tossed for $ 100 $ times, the total number of outcomes will be $ 100 $ .
Since we get head $ 20 $ times, the number of favorable outcomes will be $ 20 $ .
We are asked to calculate the probability of getting head.
Let $ P\left( H \right) $ be the probability of getting head.
Now, we shall use the probability of an event formula.
The formula to calculate the probability of an event is as follows
The probability of an event (say A), $ P\left( A \right) = \dfrac{{number{\text{ }}of{\text{ }}favorable{\text{ }}outcomes}}{{total{\text{ }}number{\text{ }}of{\text{ }}outcomes}} $
Hence, the probability of getting head, $ P\left( H \right) = \dfrac{{number{\text{ }}of{\text{ }}favorable{\text{ }}outcomes}}{{total{\text{ }}number{\text{ }}of{\text{ }}outcomes}} $
$ \Rightarrow P\left( H \right) = \dfrac{{20}}{{100}} $
$ \Rightarrow P\left( H \right) = \dfrac{1}{5} $
$ \Rightarrow P\left( H \right) = 0.2 $
Therefore, the probability of getting head is $ 0.2 $
So, the correct answer is “Option a”.
Note: The probability of an event is nothing but the ratio of the number of favorable outcomes and the total number of outcomes. This is given by the formula $ P\left( A \right) = \dfrac{{number{\text{ }}of{\text{ }}favorable{\text{ }}outcomes}}{{total{\text{ }}number{\text{ }}of{\text{ }}outcomes}} $ .
Hence, we got the required probability of getting head.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE