A coin placed on a rotating turntable just slips if it is at a distance of 40 cm from the centre if the angular velocity of the turntable is doubled, it will just slip at a distance of
A. 10 cm
B. 20 cm
C. 40 cm
D. 80 cm
Answer
Verified
483k+ views
Hint: The coin will slip when the angular force will be equal to gravitational force. So to find the distance when it will slip just equate both the forces.
Complete step by step solution:
In the above question given that
r = 40 cm
By using formula of angular force
$F = m{\omega ^2}r$
It slips when
$F = \mu mg$
Now,
$\mu mg = m{\omega ^2}r$
$ \Rightarrow \mu g = {\omega ^2}r$
$ \Rightarrow \mu g = {\omega ^2} \times 40 \cdots \cdots \left( 1 \right)$
Now,
$\omega = 2\omega $
$ \Rightarrow \mu g = {\left( {2\omega } \right)^2}r$
$ \Rightarrow \mu g = 4{\omega ^2}r \cdots \cdots \left( 2 \right)$
From equation 1 & 2 we get,
${\omega ^2} \times 40 = 4{\omega ^2}r$
$ \Rightarrow r = 10cm$
Thus, option A is correct.
Additional Information: When ω is the constant angular velocity and is equal to v/R. From Newton's laws of motion it follows that the natural motion of an object is one with constant speed in a straight line, and that a force is necessary if the object is to depart from this type of motion. Whenever an object moves in a curve, a centripetal force is necessary. In circular motion the tangential speed is constant but is changing direction at the constant rate of ω, so the centripetal force along the radius is the only force involved.
Note: In circular motion the tangential speed is constant but is changing direction at the constant rate of ω, so the centripetal force along the radius is the only force involved.
Complete step by step solution:
In the above question given that
r = 40 cm
By using formula of angular force
$F = m{\omega ^2}r$
It slips when
$F = \mu mg$
Now,
$\mu mg = m{\omega ^2}r$
$ \Rightarrow \mu g = {\omega ^2}r$
$ \Rightarrow \mu g = {\omega ^2} \times 40 \cdots \cdots \left( 1 \right)$
Now,
$\omega = 2\omega $
$ \Rightarrow \mu g = {\left( {2\omega } \right)^2}r$
$ \Rightarrow \mu g = 4{\omega ^2}r \cdots \cdots \left( 2 \right)$
From equation 1 & 2 we get,
${\omega ^2} \times 40 = 4{\omega ^2}r$
$ \Rightarrow r = 10cm$
Thus, option A is correct.
Additional Information: When ω is the constant angular velocity and is equal to v/R. From Newton's laws of motion it follows that the natural motion of an object is one with constant speed in a straight line, and that a force is necessary if the object is to depart from this type of motion. Whenever an object moves in a curve, a centripetal force is necessary. In circular motion the tangential speed is constant but is changing direction at the constant rate of ω, so the centripetal force along the radius is the only force involved.
Note: In circular motion the tangential speed is constant but is changing direction at the constant rate of ω, so the centripetal force along the radius is the only force involved.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE