Answer
Verified
469.5k+ views
Hint: In this given question, there are three sections. According to the given sections hints are also given section wise.
Section1: In this section exactly three girls are selected in the committee. So if three girls are selected then only four boys can be selected from the group of nine boys for that particular committee of seven members. So, first we choose 3 girls among 4 girls and 4 boys among 9 boys.
Section2: In this section, at least 3 girls are selected in this committee so it is possible that the committee can have 3 girls or 4 girls. So, if we select 3 girls then we have to select 4 boys and if we select 4 girls then we have to select 3 boys.
Section3: In this section, we are given the condition that at most 3 girls can be selected to form the committee of 7 members. So it is possible that from 0 to 3 girls can be selected for the committee. According to that if 0 girls are selected then 7 boys will be selected. If 1 girl is selected then 6 boys will be selected. If 2 girls are selected then 5 boys will be selected. Similarly, if 3 girls are selected then 4 boys will be selected.
Complete step by step solution:
There three sections of his question in each step we will solve each section separately.
Step1: According to section 1, the committee has exactly 3 girls and the rest are boys. So, we have to choose 4 boys among 9 boys. So,
Numbers of way the committee will be formed are
\[\begin{array}{l}
= 4{C_3} + 9{C_4}\\
= 4 \times 126 = 504
\end{array}\]
Hence, numbers of ways selecting the committee are 504
Step2: In section 2, at least 3 girls will be selected so possibilities of boys will be 3 or 4. So,
\[\begin{array}{l}
= 4{C_3} \times 9{C_4} + 4{C_4} \times 9{C_3}\\
= 4 \times 126 + 1 \times 84\\
= 504 + 84\\
= 588
\end{array}\]
Hence the numbers of ways to form the committee are 588
Step3: In section 3, at most 3 girls will be selected. So, the possibilities will be
\[\begin{array}{l}
0girls7boys = 4{C_0} \times 9{C_7} = 36\\
1girls6boys = 4{C_1} \times 9{C_6} = 336\\
2girls5boys = 4{C_2} \times 9{C_5} = 756\\
3girls4boys = 4{C_3} \times 9{C_4} = 126\\
\end{array}\]
Numbers of ways to form the committee are
\[\begin{array}{l}
= (0girls + 7boys) + (1girls + 6boys) + (2girls + 5boys) + (3girls + 4boys)\\
= 36 + 336 + 756 + 126\\
= 1254\\
\end{array}\]
Note: In this question, three sections of questions have different concepts of selecting the girls and boys. So, while dealing with each section we should give more emphasis on the given conditions such as ‘at least’, ‘at most’ and terms such as ‘exactly’.
Section1: In this section exactly three girls are selected in the committee. So if three girls are selected then only four boys can be selected from the group of nine boys for that particular committee of seven members. So, first we choose 3 girls among 4 girls and 4 boys among 9 boys.
Section2: In this section, at least 3 girls are selected in this committee so it is possible that the committee can have 3 girls or 4 girls. So, if we select 3 girls then we have to select 4 boys and if we select 4 girls then we have to select 3 boys.
Section3: In this section, we are given the condition that at most 3 girls can be selected to form the committee of 7 members. So it is possible that from 0 to 3 girls can be selected for the committee. According to that if 0 girls are selected then 7 boys will be selected. If 1 girl is selected then 6 boys will be selected. If 2 girls are selected then 5 boys will be selected. Similarly, if 3 girls are selected then 4 boys will be selected.
Complete step by step solution:
There three sections of his question in each step we will solve each section separately.
Step1: According to section 1, the committee has exactly 3 girls and the rest are boys. So, we have to choose 4 boys among 9 boys. So,
Numbers of way the committee will be formed are
\[\begin{array}{l}
= 4{C_3} + 9{C_4}\\
= 4 \times 126 = 504
\end{array}\]
Hence, numbers of ways selecting the committee are 504
Step2: In section 2, at least 3 girls will be selected so possibilities of boys will be 3 or 4. So,
\[\begin{array}{l}
= 4{C_3} \times 9{C_4} + 4{C_4} \times 9{C_3}\\
= 4 \times 126 + 1 \times 84\\
= 504 + 84\\
= 588
\end{array}\]
Hence the numbers of ways to form the committee are 588
Step3: In section 3, at most 3 girls will be selected. So, the possibilities will be
\[\begin{array}{l}
0girls7boys = 4{C_0} \times 9{C_7} = 36\\
1girls6boys = 4{C_1} \times 9{C_6} = 336\\
2girls5boys = 4{C_2} \times 9{C_5} = 756\\
3girls4boys = 4{C_3} \times 9{C_4} = 126\\
\end{array}\]
Numbers of ways to form the committee are
\[\begin{array}{l}
= (0girls + 7boys) + (1girls + 6boys) + (2girls + 5boys) + (3girls + 4boys)\\
= 36 + 336 + 756 + 126\\
= 1254\\
\end{array}\]
Note: In this question, three sections of questions have different concepts of selecting the girls and boys. So, while dealing with each section we should give more emphasis on the given conditions such as ‘at least’, ‘at most’ and terms such as ‘exactly’.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE