Answer
Verified
423k+ views
Hint: We recall the definition of definite integral of function $f\left( x \right)$ with respect to $x$ within the interval $\left[ a,b \right]$ as the area bounded by the curve and the lines $x=a,x=b$. We recall that area will obtained as negative if all parts of bounded region lie below $x-$axis or more parts of the region lie below $x-$axis then above $x-$axis.\[\]
Complete step-by-step answer:
We know that integral or primitive function of $f\left( x \right)$ is given as $F\left( x \right)+c$ where$\dfrac{d}{dx}F\left( x \right)=f\left( x \right)$. If we integrate within a certain interval $x\in \left[ a,b \right]$ rather than all over the domain then we call it a definite integral and we express it as
\[\int_{a}^{b}{f\left( x \right)}=\left[ F\left( x \right) \right]_{a}^{b}=F\left( b \right)-F\left( a \right)\]
The definite integral of the function $f\left( x \right)$ is the area of the enclosed region by the curve within the area bounds$x=a,x=b$. If all of the enclosed region lie above the $x-$axis then area as well as definite integral will be positive which means
\[\int_{a}^{b}{f\left( x \right)}\ge 0\text{ if }f\left( x \right)\ge 0\text{ for }x\in \left[ a,b \right]\]
We can take an example $f\left( x \right)=\sqrt{x}$ which is positive for the defined domain $x\in \left( 0,\infty \right)$. \[\]
If all of the enclosed region lies blow the $x-$axis then area as well as definite integral will be negative which means
\[\int_{a}^{b}{f\left( x \right)}\le 0\text{ if }f\left( x \right)\le 0\text{ for }x\in \left[ a,b \right]\]
We can take an example $f\left( x \right)=-\sqrt{x}$ which is negative for the defined domain $x\in \left( 0,\infty \right)$. \[\]
If the area of the enclosed region that lies below the $x-$axis is more than the area above the $x-$axis then the definite integral will be negative. If the curve intersects at some $x=c\in \left[ a,b \right]$ then we assume the area above as ${{A}_{a}}=\int_{a}^{c}{f\left( x \right)}$ and area below ${{A}_{b}}=\int_{c}^{b}{f\left( x \right)}$. Then we have
\[\int_{a}^{b}{f\left( x \right)}=\int_{a}^{c}{f\left( x \right)}+\int_{c}^{b}{f\left( x \right)}={{A}_{a}}+{{A}_{b}}\le 0\text{ if }\left| {{A}_{a}} \right|\le \left| {{A}_{b}} \right|\]
Let us consider $f\left( x \right)=\sin x,a=-\pi ,b=\dfrac{-\pi }{2}$ as an example. We can represent $\int_{-\pi }^{-\dfrac{-\pi }{2}}{f\left( x \right)}<0$ as the area shaded below. \[\]
Note: We note that the definite integration of $x=f\left( y \right)$within interval $y\in \left[ a,b \right]$with respect to $y$ will be negative if the enclosed region by the curve $f\left( y \right)$ and the bounds $y=a,y=b$ will be at the left side of $y-$axis or the area at the left side will be more than area at the right side. We can find a definite integral of functions whose indefinite integral cannot be determined with approximation.
Complete step-by-step answer:
We know that integral or primitive function of $f\left( x \right)$ is given as $F\left( x \right)+c$ where$\dfrac{d}{dx}F\left( x \right)=f\left( x \right)$. If we integrate within a certain interval $x\in \left[ a,b \right]$ rather than all over the domain then we call it a definite integral and we express it as
\[\int_{a}^{b}{f\left( x \right)}=\left[ F\left( x \right) \right]_{a}^{b}=F\left( b \right)-F\left( a \right)\]
The definite integral of the function $f\left( x \right)$ is the area of the enclosed region by the curve within the area bounds$x=a,x=b$. If all of the enclosed region lie above the $x-$axis then area as well as definite integral will be positive which means
\[\int_{a}^{b}{f\left( x \right)}\ge 0\text{ if }f\left( x \right)\ge 0\text{ for }x\in \left[ a,b \right]\]
We can take an example $f\left( x \right)=\sqrt{x}$ which is positive for the defined domain $x\in \left( 0,\infty \right)$. \[\]
If all of the enclosed region lies blow the $x-$axis then area as well as definite integral will be negative which means
\[\int_{a}^{b}{f\left( x \right)}\le 0\text{ if }f\left( x \right)\le 0\text{ for }x\in \left[ a,b \right]\]
We can take an example $f\left( x \right)=-\sqrt{x}$ which is negative for the defined domain $x\in \left( 0,\infty \right)$. \[\]
If the area of the enclosed region that lies below the $x-$axis is more than the area above the $x-$axis then the definite integral will be negative. If the curve intersects at some $x=c\in \left[ a,b \right]$ then we assume the area above as ${{A}_{a}}=\int_{a}^{c}{f\left( x \right)}$ and area below ${{A}_{b}}=\int_{c}^{b}{f\left( x \right)}$. Then we have
\[\int_{a}^{b}{f\left( x \right)}=\int_{a}^{c}{f\left( x \right)}+\int_{c}^{b}{f\left( x \right)}={{A}_{a}}+{{A}_{b}}\le 0\text{ if }\left| {{A}_{a}} \right|\le \left| {{A}_{b}} \right|\]
Let us consider $f\left( x \right)=\sin x,a=-\pi ,b=\dfrac{-\pi }{2}$ as an example. We can represent $\int_{-\pi }^{-\dfrac{-\pi }{2}}{f\left( x \right)}<0$ as the area shaded below. \[\]
Note: We note that the definite integration of $x=f\left( y \right)$within interval $y\in \left[ a,b \right]$with respect to $y$ will be negative if the enclosed region by the curve $f\left( y \right)$ and the bounds $y=a,y=b$ will be at the left side of $y-$axis or the area at the left side will be more than area at the right side. We can find a definite integral of functions whose indefinite integral cannot be determined with approximation.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE