
A: Find the values of each expression:
(i) ${{2}^{3}}+{{1}^{3}}$
(ii) $\sqrt{{{1}^{3}}+{{2}^{3}}}$
B. Find the value of $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}$.
C. Find the value of $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}}$.
D. Find the value of $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}+{{5}^{3}}}$.
Answer
519k+ views
Hint: For solving this type of questions you should know about general mathematics calculations. In these problems, we will simply just find the values of the cubes of the given numbers and then add them and then we will take their square roots and solve them.
Complete step by step answer:
According to our question, we have to find the values of some of the given expressions. For solving these expressions, first we will find the values of the given terms as cube form. And then we will find the submission as asked in the question and then take the square root of that number. So, let us solve each of them one by one.
A. (i) ${{2}^{3}}+{{1}^{3}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1\times 1\times 1=1 \\
& {{2}^{3}}=2\times 2\times 2=8 \\
\end{align}$
So, we will substitute these values in the expression and get,
$=1+8=9$
(ii) $\sqrt{{{1}^{3}}+{{2}^{3}}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1\times 1\times 1=1 \\
& {{2}^{3}}=2\times 2\times 2=8 \\
\end{align}$
So, we will substitute these values in the expression and get,
$=\sqrt{1+8}=\sqrt{9}=3$
B. $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1\times 1\times 1=1 \\
& {{2}^{3}}=2\times 2\times 2=8 \\
& {{3}^{3}}=3\times 3\times 3=27 \\
\end{align}$
So, we will substitute these values in the given expression and so we get,
$=\sqrt{1+8+27}=\sqrt{1+35}=\sqrt{36}=6$
C. $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1 \\
& {{2}^{3}}=8 \\
& {{3}^{3}}=27 \\
& {{4}^{3}}=4\times 4\times 4=64 \\
\end{align}$
So, we will substitute these values in the given expression and so we get,
$=\sqrt{1+8+27+64}=\sqrt{36+64}=\sqrt{100}=10$
D. $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}+{{5}^{3}}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1 \\
& {{2}^{3}}=8 \\
& {{3}^{3}}=27 \\
& {{4}^{3}}=64 \\
& {{5}^{3}}=5\times 5\times 5=125 \\
\end{align}$
So, we will substitute these values in the given expression and so we get,
$=\sqrt{1+8+27+64+125}=\sqrt{100+125}=\sqrt{225}=15$
So, these are the values that we got.
Note: While solving such questions you have to be careful about the calculations because there are not many methods for solving them. But the only important thing is the calculations, so take the cubes accurately and then take the square root carefully, otherwise the whole solution will be wrong.
Complete step by step answer:
According to our question, we have to find the values of some of the given expressions. For solving these expressions, first we will find the values of the given terms as cube form. And then we will find the submission as asked in the question and then take the square root of that number. So, let us solve each of them one by one.
A. (i) ${{2}^{3}}+{{1}^{3}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1\times 1\times 1=1 \\
& {{2}^{3}}=2\times 2\times 2=8 \\
\end{align}$
So, we will substitute these values in the expression and get,
$=1+8=9$
(ii) $\sqrt{{{1}^{3}}+{{2}^{3}}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1\times 1\times 1=1 \\
& {{2}^{3}}=2\times 2\times 2=8 \\
\end{align}$
So, we will substitute these values in the expression and get,
$=\sqrt{1+8}=\sqrt{9}=3$
B. $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1\times 1\times 1=1 \\
& {{2}^{3}}=2\times 2\times 2=8 \\
& {{3}^{3}}=3\times 3\times 3=27 \\
\end{align}$
So, we will substitute these values in the given expression and so we get,
$=\sqrt{1+8+27}=\sqrt{1+35}=\sqrt{36}=6$
C. $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1 \\
& {{2}^{3}}=8 \\
& {{3}^{3}}=27 \\
& {{4}^{3}}=4\times 4\times 4=64 \\
\end{align}$
So, we will substitute these values in the given expression and so we get,
$=\sqrt{1+8+27+64}=\sqrt{36+64}=\sqrt{100}=10$
D. $\sqrt{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}+{{5}^{3}}}$
As we know that,
$\begin{align}
& {{1}^{3}}=1 \\
& {{2}^{3}}=8 \\
& {{3}^{3}}=27 \\
& {{4}^{3}}=64 \\
& {{5}^{3}}=5\times 5\times 5=125 \\
\end{align}$
So, we will substitute these values in the given expression and so we get,
$=\sqrt{1+8+27+64+125}=\sqrt{100+125}=\sqrt{225}=15$
So, these are the values that we got.
Note: While solving such questions you have to be careful about the calculations because there are not many methods for solving them. But the only important thing is the calculations, so take the cubes accurately and then take the square root carefully, otherwise the whole solution will be wrong.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

Define development

Distinguish between population growth and population class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE

