A fringe width of a certain interference pattern is . What is the distance of dark fringe from the centre?
Answer
Verified
479.1k+ views
Hint: Firstly to find the distance of the distance of dark fringe from the centre we will write the formula. After that we will build a relation between and distance of dark fringe from the centre and by solving the equation we will obtain our result.
Formula used:
Complete answer:
Distance of dark fringe from the centre, since it is dark fringe
For dark fringe we will put n=5
We will put in the above equation.
The distance of dark fringe from the centre is .
So, the correct answer is “Option A”.
Additional Information:
Interference is the result of superposition of secondary waves starting from two different wavefronts originating from two different coherent sources. All bright and dark fringes are of equal width. All bright fringes are of the same intensity. Regions of dark fringes are perfectly dark. So there is good contrast between bright and dark fringes. At an angle of , we get a bright fringe in the interference pattern of two narrow slits separated by distance d .
Condition for sustained interference:
The two sources should continuously emit waves of the same frequency and wavelength. The interfering waves should be in the same state of polarisation. The interfering waves must nearly travel along the same direction. The sources should be monochromatic, otherwise fringes of different colours will overlap just to give a few observable fringes.
Note:
In Young’s double slit experiment, the width of the central bright fringe is equal to the distance between the first dark fringes on the two sides of the central bright fringe. So the width of the central fringe is given by
As all the bright and dark fringes are of the same width the angular width of a fringe is given by .
Formula used:
Complete answer:
Distance of
For
We will put
The distance of
So, the correct answer is “Option A”.
Additional Information:
Interference is the result of superposition of secondary waves starting from two different wavefronts originating from two different coherent sources. All bright and dark fringes are of equal width. All bright fringes are of the same intensity. Regions of dark fringes are perfectly dark. So there is good contrast between bright and dark fringes. At an angle of
Condition for sustained interference:
The two sources should continuously emit waves of the same frequency and wavelength. The interfering waves should be in the same state of polarisation. The interfering waves must nearly travel along the same direction. The sources should be monochromatic, otherwise fringes of different colours will overlap just to give a few observable fringes.
Note:
In Young’s double slit experiment, the width of the central bright fringe is equal to the distance between the first dark fringes on the two sides of the central bright fringe. So the width of the central fringe is given by
As all the bright and dark fringes are of the same width the angular width of a fringe is given by
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE