Answer
Verified
466.8k+ views
Hint: Firstly to find the distance of the distance of ${{5}^{\text{th}}}$ dark fringe from the centre we will write the formula. After that we will build a relation between $\beta $ and distance of ${{5}^{\text{th}}}$ dark fringe from the centre and by solving the equation we will obtain our result.
Formula used:
${{x}_{n}}=\dfrac{\left( 2n+1 \right)\lambda D}{2d}$
Complete answer:
Distance of ${{5}^{\text{th}}}$ dark fringe from the centre, since it is dark fringe
${{x}_{n}}=\dfrac{\left( 2n+1 \right)\lambda D}{2d}$
For ${{5}^{\text{th}}}$ dark fringe we will put n=5
$\begin{align}
& {{x}_{n}}=\dfrac{11\lambda D}{2d} \\
& \beta =\dfrac{\lambda D}{d} \\
\end{align}$
We will put $\beta $ in the above equation.
$\begin{align}
& {{x}_{n}}=\dfrac{11\lambda D}{2d} \\
& =\dfrac{11}{2}\times \beta \\
& {{x}_{n}}=\dfrac{11}{2}\times 0.002 \\
& {{x}_{n}}=1.1\times {{10}^{-2}}cm \\
\end{align}$
The distance of ${{5}^{\text{th}}}$ dark fringe from the centre is $1.1\times {{10}^{-2}}cm$.
So, the correct answer is “Option A”.
Additional Information:
Interference is the result of superposition of secondary waves starting from two different wavefronts originating from two different coherent sources. All bright and dark fringes are of equal width. All bright fringes are of the same intensity. Regions of dark fringes are perfectly dark. So there is good contrast between bright and dark fringes. At an angle of $\dfrac{\lambda }{d}$ , we get a bright fringe in the interference pattern of two narrow slits separated by distance d .
Condition for sustained interference:
The two sources should continuously emit waves of the same frequency and wavelength. The interfering waves should be in the same state of polarisation. The interfering waves must nearly travel along the same direction. The sources should be monochromatic, otherwise fringes of different colours will overlap just to give a few observable fringes.
Note:
In Young’s double slit experiment, the width of the central bright fringe is equal to the distance between the first dark fringes on the two sides of the central bright fringe. So the width of the central fringe is given by
${{\beta }_{{}^\circ }}=\dfrac{D\lambda }{d}$
As all the bright and dark fringes are of the same width the angular width of a fringe is given by $\theta =\dfrac{\beta }{d}$.
Formula used:
${{x}_{n}}=\dfrac{\left( 2n+1 \right)\lambda D}{2d}$
Complete answer:
Distance of ${{5}^{\text{th}}}$ dark fringe from the centre, since it is dark fringe
${{x}_{n}}=\dfrac{\left( 2n+1 \right)\lambda D}{2d}$
For ${{5}^{\text{th}}}$ dark fringe we will put n=5
$\begin{align}
& {{x}_{n}}=\dfrac{11\lambda D}{2d} \\
& \beta =\dfrac{\lambda D}{d} \\
\end{align}$
We will put $\beta $ in the above equation.
$\begin{align}
& {{x}_{n}}=\dfrac{11\lambda D}{2d} \\
& =\dfrac{11}{2}\times \beta \\
& {{x}_{n}}=\dfrac{11}{2}\times 0.002 \\
& {{x}_{n}}=1.1\times {{10}^{-2}}cm \\
\end{align}$
The distance of ${{5}^{\text{th}}}$ dark fringe from the centre is $1.1\times {{10}^{-2}}cm$.
So, the correct answer is “Option A”.
Additional Information:
Interference is the result of superposition of secondary waves starting from two different wavefronts originating from two different coherent sources. All bright and dark fringes are of equal width. All bright fringes are of the same intensity. Regions of dark fringes are perfectly dark. So there is good contrast between bright and dark fringes. At an angle of $\dfrac{\lambda }{d}$ , we get a bright fringe in the interference pattern of two narrow slits separated by distance d .
Condition for sustained interference:
The two sources should continuously emit waves of the same frequency and wavelength. The interfering waves should be in the same state of polarisation. The interfering waves must nearly travel along the same direction. The sources should be monochromatic, otherwise fringes of different colours will overlap just to give a few observable fringes.
Note:
In Young’s double slit experiment, the width of the central bright fringe is equal to the distance between the first dark fringes on the two sides of the central bright fringe. So the width of the central fringe is given by
${{\beta }_{{}^\circ }}=\dfrac{D\lambda }{d}$
As all the bright and dark fringes are of the same width the angular width of a fringe is given by $\theta =\dfrac{\beta }{d}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it