Answer
Verified
469.5k+ views
Hint: Convert the polar coordinates into Cartesian coordinates using \[{\text{x = r}cos\theta }\] and \[{\text{y = r}sin\theta }\]. Use both the coordinates of x and y to convert \[{\text{r = 10}cos\theta }\] into the terms of x and y and try to mould it into the equation of possible curve.
Complete step by step solution: As we know, from the above hint that \[{\text{x = r}cos\theta }\] . Replace the value of from \[x = rcos\theta \] into \[r = 10cos\theta \]
Using ${cos\theta = }\dfrac{{\text{x}}}{{\text{r}}}$ in the given polar coordinate equation,
And so on simplifying we can get ${{\text{r}}^{\text{2}}}{\text{ = 10x}}$
As we know that equation of circle is $\sqrt {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} {\text{ = r}}$
Put the value of ${{\text{r}}^{\text{2}}}$in the equation of the circle . and so the equation will be simplified to
${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 10x}}$
Make the perfect square of both the variables as to convert it in the equation of circle if possible,
\[{{\text{x}}^{\text{2}}}{\text{ - 10x + }}{{\text{y}}^{\text{2}}}{\text{ + 25 - 25 = 0}}\]
\[{\left( {{\text{x - 5}}} \right)^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 25}}\]
So from the above equation we can state that through the above given polar coordinates if converted into Cartesian coordinates then it will be a circle.
Hence the above obtained is the equation of circle with radius 5 and centre\[{\text{}}\left( {{\text{5,0}}} \right){\text{.}}\]
Note: use the conversion of polar coordinate into Cartesian coordinate properly. Using the conversion, replace the values of r and x from equations and mould it properly into the possible equation of the curve. Form the equation properly so that the equation of the curve can be easily obtained. Also remember the general expression of circle, ellipse, hyperbola etc.
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The x and y coordinates of a point measure the respective distances from the point to a pair of perpendicular lines in the plane called the coordinate axes, which meet at the origin.
Complete step by step solution: As we know, from the above hint that \[{\text{x = r}cos\theta }\] . Replace the value of from \[x = rcos\theta \] into \[r = 10cos\theta \]
Using ${cos\theta = }\dfrac{{\text{x}}}{{\text{r}}}$ in the given polar coordinate equation,
And so on simplifying we can get ${{\text{r}}^{\text{2}}}{\text{ = 10x}}$
As we know that equation of circle is $\sqrt {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} {\text{ = r}}$
Put the value of ${{\text{r}}^{\text{2}}}$in the equation of the circle . and so the equation will be simplified to
${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 10x}}$
Make the perfect square of both the variables as to convert it in the equation of circle if possible,
\[{{\text{x}}^{\text{2}}}{\text{ - 10x + }}{{\text{y}}^{\text{2}}}{\text{ + 25 - 25 = 0}}\]
\[{\left( {{\text{x - 5}}} \right)^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 25}}\]
So from the above equation we can state that through the above given polar coordinates if converted into Cartesian coordinates then it will be a circle.
Hence the above obtained is the equation of circle with radius 5 and centre\[{\text{}}\left( {{\text{5,0}}} \right){\text{.}}\]
Note: use the conversion of polar coordinate into Cartesian coordinate properly. Using the conversion, replace the values of r and x from equations and mould it properly into the possible equation of the curve. Form the equation properly so that the equation of the curve can be easily obtained. Also remember the general expression of circle, ellipse, hyperbola etc.
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The x and y coordinates of a point measure the respective distances from the point to a pair of perpendicular lines in the plane called the coordinate axes, which meet at the origin.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers