A group of $50$ items has mean $70$ and standard deviation $8$. What will be the value of mean and standard deviation if each value is multiplied by $5$?
Answer
Verified
386.1k+ views
Hint: We are given that a group of $50$ items has mean $70$ and standard deviation $8$ and we need to find the mean and standard deviation when each value is multiplied by $5$.
Mean is the sum of the values of all observations divided by the total number of observations and the standard deviation is the positive square root of the variance of a variance $X$. Standard deviation is denoted by $\sigma $.
We can calculate the mean and standard deviation of values if each value is multiplied by $5$, by simply multiplying each observation by $5$ and then comparing the new mean and standard deviation to the old ones.
Formula:
Mean: $\overline X = \dfrac{{{x_1} + {x_2} + {x_3} + ...... + {x_{50}}}}{n}$
Standard deviation: $\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} } $
Complete step-by-step answer:
We have,
$n = 50$ ($n$ = no. of observations)
Mean $\left( {\overline X } \right) = 70$
Standard deviation $\left( \sigma \right) = 8$
Calculations for mean:
Let the observations be ${x_1},{x_2},{x_3},....,{x_{50}}$ , $n = 50$ and $\overline X $ be their mean. Mean $\left( {\overline X } \right) = 70$.
$\overline X = \dfrac{{{x_1} + {x_2} + {x_3} + ...... + {x_{50}}}}{n}$
$ \Rightarrow 70 = \dfrac{{{x_1} + {x_2} + {x_3} + ...... + {x_{50}}}}{{50}}$ $.....\left( i \right)$
If each value is multiplied by $5$, then the new observations be:
${x_1} \times 5,{x_2} \times 5,{x_3} \times 5,....,{x_{50}} \times 5$
$ \Leftrightarrow 5{x_1},5{x_2},5{x_3},....,5{x_{50}}$
Let the new observations be $5{x_1},5{x_2},5{x_3},....,5{x_{50}}$, $n = 50$ and $\overline X '$ be their mean or new mean.
\[ \Rightarrow \overline X ' = \dfrac{{5{x_1} + 5{x_2} + 5{x_3} + .... + 5{x_{50}}}}{{50}}\]
Take $5$ as common
$ \Rightarrow \overline X ' = \dfrac{{5\left( {{x_1} + {x_2} + {x_3} + ...... + {x_{50}}} \right)}}{{50}}$
It can also be written as:
$ \Rightarrow \overline X ' = 5\dfrac{{\left( {{x_1} + {x_2} + {x_3} + ...... + {x_{50}}} \right)}}{{50}}$
(We know that $70 = \dfrac{{{x_1} + {x_2} + {x_3} + ...... + {x_{50}}}}{{50}}$, from $\left( i \right)$ )
$ \Rightarrow \overline X ' = 5 \times \overline X $ or $\overline X ' = 5 \times 70$
\[ \Rightarrow \overline X ' = 350\]
Thus new mean or value of mean if each value is multiplied by $5$ is $350$.
Calculations for standard deviation:
Let the observations be ${x_1},{x_2},{x_3},....,{x_{50}}$ , $n = 50$, $\overline X $ be their mean and Standard deviation $\left( \sigma \right) = 8$
$\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} } $
On squaring both sides, we get
$ \Rightarrow {\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} $
Substitute value of $\sigma $ and no. of observations.
$ \Rightarrow {8^2} = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{({X_i} - \bar X)}^2}} $
$ \Rightarrow 64 = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{({X_i} - \bar X)}^2}} $ …..$\left( {ii} \right)$
If each value is multiplied by $5$, new observations will be: ${x_1} \times 5,{x_2} \times 5,{x_3} \times 5,....,{x_{50}} \times 5$
$ \Leftrightarrow 5{x_1},5{x_2},5{x_3},....,5{x_{50}}$
Let the new observations be $5{x_1},5{x_2},5{x_3},....,5{x_{50}}$, $n = 50$, $\overline X '$ be their mean or new mean and $\sigma '$ be the new standard deviation.
$ \Rightarrow \sigma ' = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {{{(X{'_i} - \bar X')}^2}} } $
On squaring both sides, we get
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{(X{'_i} - \bar X')}^2}} $
As we know no. of observations are fixed, so put $n = 50$.
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{(X{'_i} - \bar X')}^2}} $
As we know $\overline X ' = 5 \times \overline X $
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{(X{'_i} - 5\bar X)}^2}} $
On expanding, we get
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\left[ {{{\left( {{X_1}' - 5\overline X } \right)}^2} + {{\left( {{X_2}' - 5\overline X } \right)}^2} + ...... + {{\left( {{X_{50}}' - 5\overline X } \right)}^2}} \right]$
As we know every observation is multiplied by $5$ so we can write ${X_1}'$ as $5{X_1}$ , we will repeat this for every observation.
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\left[ {{{\left( {5{X_1} - 5\overline X } \right)}^2} + {{\left( {5{X_2} - 5\overline X } \right)}^2} + ...... + {{\left( {5{X_{50}} - 5\overline X } \right)}^2}} \right]$
Take ${5^2}$ common from every observation.
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\left[ {{5^2}{{\left( {{X_1} - \overline X } \right)}^2} + {5^2}{{\left( {{X_2} - \overline X } \right)}^2} + ...... + {5^2}{{\left( {{X_{50}} - \overline X } \right)}^2}} \right]$
Take ${5^2}$ as common, from the bracket
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n} \times {5^2}\left[ {{{\left( {{X_1} - \overline X } \right)}^2} + {{\left( {{X_2} - \overline X } \right)}^2} + ...... + {{\left( {{X_{50}} - \overline X } \right)}^2}} \right]$
$ \Rightarrow {\left( {\sigma '} \right)^2} = 25 \times \dfrac{1}{n}\left[ {{{\left( {{X_1} - \overline X } \right)}^2} + {{\left( {{X_2} - \overline X } \right)}^2} + ...... + {{\left( {{X_{50}} - \overline X } \right)}^2}} \right]$
On contraction, we get
$ \Rightarrow {\left( {\sigma '} \right)^2} = 25 \times \dfrac{1}{n}{\left( {\sum\limits_{i = 1}^{50} {{X_i} - \overline X } } \right)^2}$
As we know ${\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{({X_i} - \bar X)}^2}} $ from $\left( {ii} \right)$
$ \Rightarrow {\left( {\sigma '} \right)^2} = 25 \times {\left( \sigma \right)^2}$
Substitute the value of ${\sigma ^2} = 64$
$ \Rightarrow {\left( {\sigma '} \right)^2} = 25 \times 64$
On multiplying, we get
$ \Rightarrow {\left( {\sigma '} \right)^2} = 1600$
Take square roots on both the sides
$ \Rightarrow \sigma ' = \sqrt {1600} $
$ \Rightarrow \sigma ' = 40$
Thus, the mean and standard deviation if each value is multiplied by $5$ is $350$ and $40$.
Note: We wrote only the positive value of standard deviation as our answer because standard deviation is the positive square root of the variance of a variate $X$. Don’t forget to multiply observations by $5$. We should take care of the calculations so as to be sure of our final answer.
Mean is the sum of the values of all observations divided by the total number of observations and the standard deviation is the positive square root of the variance of a variance $X$. Standard deviation is denoted by $\sigma $.
We can calculate the mean and standard deviation of values if each value is multiplied by $5$, by simply multiplying each observation by $5$ and then comparing the new mean and standard deviation to the old ones.
Formula:
Mean: $\overline X = \dfrac{{{x_1} + {x_2} + {x_3} + ...... + {x_{50}}}}{n}$
Standard deviation: $\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} } $
Complete step-by-step answer:
We have,
$n = 50$ ($n$ = no. of observations)
Mean $\left( {\overline X } \right) = 70$
Standard deviation $\left( \sigma \right) = 8$
Calculations for mean:
Let the observations be ${x_1},{x_2},{x_3},....,{x_{50}}$ , $n = 50$ and $\overline X $ be their mean. Mean $\left( {\overline X } \right) = 70$.
$\overline X = \dfrac{{{x_1} + {x_2} + {x_3} + ...... + {x_{50}}}}{n}$
$ \Rightarrow 70 = \dfrac{{{x_1} + {x_2} + {x_3} + ...... + {x_{50}}}}{{50}}$ $.....\left( i \right)$
If each value is multiplied by $5$, then the new observations be:
${x_1} \times 5,{x_2} \times 5,{x_3} \times 5,....,{x_{50}} \times 5$
$ \Leftrightarrow 5{x_1},5{x_2},5{x_3},....,5{x_{50}}$
Let the new observations be $5{x_1},5{x_2},5{x_3},....,5{x_{50}}$, $n = 50$ and $\overline X '$ be their mean or new mean.
\[ \Rightarrow \overline X ' = \dfrac{{5{x_1} + 5{x_2} + 5{x_3} + .... + 5{x_{50}}}}{{50}}\]
Take $5$ as common
$ \Rightarrow \overline X ' = \dfrac{{5\left( {{x_1} + {x_2} + {x_3} + ...... + {x_{50}}} \right)}}{{50}}$
It can also be written as:
$ \Rightarrow \overline X ' = 5\dfrac{{\left( {{x_1} + {x_2} + {x_3} + ...... + {x_{50}}} \right)}}{{50}}$
(We know that $70 = \dfrac{{{x_1} + {x_2} + {x_3} + ...... + {x_{50}}}}{{50}}$, from $\left( i \right)$ )
$ \Rightarrow \overline X ' = 5 \times \overline X $ or $\overline X ' = 5 \times 70$
\[ \Rightarrow \overline X ' = 350\]
Thus new mean or value of mean if each value is multiplied by $5$ is $350$.
Calculations for standard deviation:
Let the observations be ${x_1},{x_2},{x_3},....,{x_{50}}$ , $n = 50$, $\overline X $ be their mean and Standard deviation $\left( \sigma \right) = 8$
$\sigma = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} } $
On squaring both sides, we get
$ \Rightarrow {\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} $
Substitute value of $\sigma $ and no. of observations.
$ \Rightarrow {8^2} = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{({X_i} - \bar X)}^2}} $
$ \Rightarrow 64 = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{({X_i} - \bar X)}^2}} $ …..$\left( {ii} \right)$
If each value is multiplied by $5$, new observations will be: ${x_1} \times 5,{x_2} \times 5,{x_3} \times 5,....,{x_{50}} \times 5$
$ \Leftrightarrow 5{x_1},5{x_2},5{x_3},....,5{x_{50}}$
Let the new observations be $5{x_1},5{x_2},5{x_3},....,5{x_{50}}$, $n = 50$, $\overline X '$ be their mean or new mean and $\sigma '$ be the new standard deviation.
$ \Rightarrow \sigma ' = \sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {{{(X{'_i} - \bar X')}^2}} } $
On squaring both sides, we get
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{(X{'_i} - \bar X')}^2}} $
As we know no. of observations are fixed, so put $n = 50$.
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{(X{'_i} - \bar X')}^2}} $
As we know $\overline X ' = 5 \times \overline X $
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{(X{'_i} - 5\bar X)}^2}} $
On expanding, we get
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\left[ {{{\left( {{X_1}' - 5\overline X } \right)}^2} + {{\left( {{X_2}' - 5\overline X } \right)}^2} + ...... + {{\left( {{X_{50}}' - 5\overline X } \right)}^2}} \right]$
As we know every observation is multiplied by $5$ so we can write ${X_1}'$ as $5{X_1}$ , we will repeat this for every observation.
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\left[ {{{\left( {5{X_1} - 5\overline X } \right)}^2} + {{\left( {5{X_2} - 5\overline X } \right)}^2} + ...... + {{\left( {5{X_{50}} - 5\overline X } \right)}^2}} \right]$
Take ${5^2}$ common from every observation.
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n}\left[ {{5^2}{{\left( {{X_1} - \overline X } \right)}^2} + {5^2}{{\left( {{X_2} - \overline X } \right)}^2} + ...... + {5^2}{{\left( {{X_{50}} - \overline X } \right)}^2}} \right]$
Take ${5^2}$ as common, from the bracket
$ \Rightarrow {\left( {\sigma '} \right)^2} = \dfrac{1}{n} \times {5^2}\left[ {{{\left( {{X_1} - \overline X } \right)}^2} + {{\left( {{X_2} - \overline X } \right)}^2} + ...... + {{\left( {{X_{50}} - \overline X } \right)}^2}} \right]$
$ \Rightarrow {\left( {\sigma '} \right)^2} = 25 \times \dfrac{1}{n}\left[ {{{\left( {{X_1} - \overline X } \right)}^2} + {{\left( {{X_2} - \overline X } \right)}^2} + ...... + {{\left( {{X_{50}} - \overline X } \right)}^2}} \right]$
On contraction, we get
$ \Rightarrow {\left( {\sigma '} \right)^2} = 25 \times \dfrac{1}{n}{\left( {\sum\limits_{i = 1}^{50} {{X_i} - \overline X } } \right)^2}$
As we know ${\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^{50} {{{({X_i} - \bar X)}^2}} $ from $\left( {ii} \right)$
$ \Rightarrow {\left( {\sigma '} \right)^2} = 25 \times {\left( \sigma \right)^2}$
Substitute the value of ${\sigma ^2} = 64$
$ \Rightarrow {\left( {\sigma '} \right)^2} = 25 \times 64$
On multiplying, we get
$ \Rightarrow {\left( {\sigma '} \right)^2} = 1600$
Take square roots on both the sides
$ \Rightarrow \sigma ' = \sqrt {1600} $
$ \Rightarrow \sigma ' = 40$
Thus, the mean and standard deviation if each value is multiplied by $5$ is $350$ and $40$.
Note: We wrote only the positive value of standard deviation as our answer because standard deviation is the positive square root of the variance of a variate $X$. Don’t forget to multiply observations by $5$. We should take care of the calculations so as to be sure of our final answer.
Recently Updated Pages
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
The president of the constituent assembly was A Dr class 9 social science CBSE
On an outline map of India show its neighbouring c class 9 social science CBSE
Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE
On an outline map of India mark the Karakoram range class 9 social science CBSE