A heap of wheat is in the form of a cone whose diameter is 10.5m and the height is 3m.Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of canvas required.
Answer
Verified
511.5k+ views
Hint- The heap is enclosed as a conic section which is cone in this case. Volume of heap can easily be calculated using the direct formula of volume of cone. The area of the canvas required to protect the heap will be the curved surface area of the cone.
The diameter of the cone, D=10.5m thus
Radius of cone, r = $\dfrac{D}{2} = \dfrac{{10.5}}{2} = 5.25m$
Height of cone, H = 3m
The volume of cones is given as $\dfrac{1}{3}\pi {r^2}H$…………………………. (1)
Putting the values in equation (1)
Volume = $\dfrac{1}{3}\pi \times {5.25^2} \times 3$
$ \Rightarrow $ Volume = $\left( {\dfrac{1}{3} \times \dfrac{{22}}{7} \times 82.68} \right)$
$ \Rightarrow $ Volume = 86.625 ${m^3}$
Now the heap is covered by a canvas to protect it from rain, thus the area of the canvas that we will be using for the conic section (cone) will be the curved surface area of that conic section.
Curved surface area of the cone is $\pi rl$ where r is radius and l is the slant height……………. (2)
Now slant height can be calculated using Pythagoras theorem which is $hypotenu{s^2} = perpendicula{r^2} + bas{e^2}$
In triangle ABC
$A{C^2} = A{B^2} + B{C^2}$…………………… (3)
Now AC = l (slant height), BC= r (radius of base), AB = h (height)
So using the above figure ${l^2} = {h^2} + {r^2}$
Putting the values we get
$ \Rightarrow {l^2} = {3^2} + {\left( {5.25} \right)^2}$
Hence ${l^2} = 9 + 27.5625 = 36.5625$
Hence l=6.0467 m
Now using equation (2)
Curved surface area = $\pi rl$
$ \Rightarrow $Curved surface area = $\dfrac{{22}}{7} \times 5.25 \times 6.0467$
On solving curved surface area = 99.77 ${m^2}$
Note – Whenever we face such problems the key concept that we need to recall that whenever being asked about the area associated with a cone, then always we have to find the curved surface area. Another note point is the height, radius of base and the slant height of a cone forms a right angle triangle.
The diameter of the cone, D=10.5m thus
Radius of cone, r = $\dfrac{D}{2} = \dfrac{{10.5}}{2} = 5.25m$
Height of cone, H = 3m
The volume of cones is given as $\dfrac{1}{3}\pi {r^2}H$…………………………. (1)
Putting the values in equation (1)
Volume = $\dfrac{1}{3}\pi \times {5.25^2} \times 3$
$ \Rightarrow $ Volume = $\left( {\dfrac{1}{3} \times \dfrac{{22}}{7} \times 82.68} \right)$
$ \Rightarrow $ Volume = 86.625 ${m^3}$
Now the heap is covered by a canvas to protect it from rain, thus the area of the canvas that we will be using for the conic section (cone) will be the curved surface area of that conic section.
Curved surface area of the cone is $\pi rl$ where r is radius and l is the slant height……………. (2)
Now slant height can be calculated using Pythagoras theorem which is $hypotenu{s^2} = perpendicula{r^2} + bas{e^2}$
In triangle ABC
$A{C^2} = A{B^2} + B{C^2}$…………………… (3)
Now AC = l (slant height), BC= r (radius of base), AB = h (height)
So using the above figure ${l^2} = {h^2} + {r^2}$
Putting the values we get
$ \Rightarrow {l^2} = {3^2} + {\left( {5.25} \right)^2}$
Hence ${l^2} = 9 + 27.5625 = 36.5625$
Hence l=6.0467 m
Now using equation (2)
Curved surface area = $\pi rl$
$ \Rightarrow $Curved surface area = $\dfrac{{22}}{7} \times 5.25 \times 6.0467$
On solving curved surface area = 99.77 ${m^2}$
Note – Whenever we face such problems the key concept that we need to recall that whenever being asked about the area associated with a cone, then always we have to find the curved surface area. Another note point is the height, radius of base and the slant height of a cone forms a right angle triangle.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE