Answer
Verified
398.7k+ views
Hint: We will have to determine no. of samples of 3 rings with 15 different letters first. Then find no. of time someone successfully open the lock and no. of time someone unsuccessfully to open the lock. Finally, we will determine the numerical feature of N accordingly as asked.
Complete step-by-step answer:
Let’s assume a lock which have three rings but 2 letters so,
$\left( {AAA} \right),\left( {AAB} \right)$
$
\left( {ABA} \right),\left( {ABB} \right) \\
\left( {BAA} \right),\left( {BAB} \right) \\
\left( {BBA} \right),\left( {BBB} \right) \\
$
These are total 8 i.e. ${2^3}$.
Thus, we may apply this logic to determine the no. of samples of 3 rings with 15 letters lock and then look at the options.
No. of samples of three rings with 15 different letters = ${15^3} = 3375$
But, out of all these permutations only one pattern will be the correct one.
$\therefore $ No. unsuccessful attempts will be (3375-1) = 3374
Now, by factorization of 3374 we will get,
$3374 = 2 \times 7 \times 241$
So, its Prime factors are 2, 7, 241.
$\therefore $ N is the product of 3 distinct prime numbers.
So, the correct answer is “Option B”.
Note: We need to understand the concepts about probability as well as the permutations and combinations. Also, the concept of events and arrangement making will have an important role for solving such problems. Number systems and their various rules are very much applicable for such solutions
Complete step-by-step answer:
Let’s assume a lock which have three rings but 2 letters so,
$\left( {AAA} \right),\left( {AAB} \right)$
$
\left( {ABA} \right),\left( {ABB} \right) \\
\left( {BAA} \right),\left( {BAB} \right) \\
\left( {BBA} \right),\left( {BBB} \right) \\
$
These are total 8 i.e. ${2^3}$.
Thus, we may apply this logic to determine the no. of samples of 3 rings with 15 letters lock and then look at the options.
No. of samples of three rings with 15 different letters = ${15^3} = 3375$
But, out of all these permutations only one pattern will be the correct one.
$\therefore $ No. unsuccessful attempts will be (3375-1) = 3374
Now, by factorization of 3374 we will get,
$3374 = 2 \times 7 \times 241$
So, its Prime factors are 2, 7, 241.
$\therefore $ N is the product of 3 distinct prime numbers.
So, the correct answer is “Option B”.
Note: We need to understand the concepts about probability as well as the permutations and combinations. Also, the concept of events and arrangement making will have an important role for solving such problems. Number systems and their various rules are very much applicable for such solutions
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE