
A mass m = 20 g has a charge q = 3.0 mC. It moves with a velocity of 20 m/s and enters a region of electric field of 80 N/C in the same direction as the velocity of the mass. The velocity of the mass after 3 seconds in this region is:
Answer
484.2k+ views
Hint: The acceleration is calculated from the force experienced by the body in the electric field and final velocity is calculated from the equation of motion.
It can be calculated by using Formulas:
1. $a = \dfrac{{qE}}{m}$
2. $v = u + at$
Step by step answer: A body of mass m = 20 g which has a charge q of 3.0 mC i.e., 3 ×10⁻3 C ( since 1 C = 103 mC). The initial velocity (u) is 20 m/s through which it enters a region of electric field. As the body enters the region, it experiences a force due to this electric field (E). The body continues to move in the same direction. So, the final velocity (v) of the body is positive i.e., v is positive.
The force (F) experienced by the mass m is provided by the electric field of the region in which the body enters.
Thus, $F = qE$
$\Rightarrow$ $ma = qE$
[$F = ma$ where a is the acceleration of the body of mass m]
$\Rightarrow$ $a = \dfrac{{qE}}{m}$
$\Rightarrow$ $ [ E = 80 N/C and m = 20 × 10⁻3g as 1 g = 10⁻3 kg]$
$\Rightarrow$ a = 12 m/s2
Now, The velocity (v) of the mass after time t = 3 sec is calculated by using the equation
$v = u + at$
$\Rightarrow$ $v = 20 + 12 \times 3$
$\therefore$ $v = 20 + 36 = 56$
Therefore, the final velocity of the mass after 3 sec is 56 m/s.
Note: The particle continues to move in the same direction. So, the sign of final velocity will be positive and hence, the acceleration will be also positive.
It can be calculated by using Formulas:
1. $a = \dfrac{{qE}}{m}$
2. $v = u + at$
Step by step answer: A body of mass m = 20 g which has a charge q of 3.0 mC i.e., 3 ×10⁻3 C ( since 1 C = 103 mC). The initial velocity (u) is 20 m/s through which it enters a region of electric field. As the body enters the region, it experiences a force due to this electric field (E). The body continues to move in the same direction. So, the final velocity (v) of the body is positive i.e., v is positive.
The force (F) experienced by the mass m is provided by the electric field of the region in which the body enters.
Thus, $F = qE$
$\Rightarrow$ $ma = qE$
[$F = ma$ where a is the acceleration of the body of mass m]
$\Rightarrow$ $a = \dfrac{{qE}}{m}$
$\Rightarrow$ $ [ E = 80 N/C and m = 20 × 10⁻3g as 1 g = 10⁻3 kg]$
$\Rightarrow$ a = 12 m/s2
Now, The velocity (v) of the mass after time t = 3 sec is calculated by using the equation
$v = u + at$
$\Rightarrow$ $v = 20 + 12 \times 3$
$\therefore$ $v = 20 + 36 = 56$
Therefore, the final velocity of the mass after 3 sec is 56 m/s.
Note: The particle continues to move in the same direction. So, the sign of final velocity will be positive and hence, the acceleration will be also positive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

The final image formed by a compound microscope is class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

Which of the following properties of a proton can change class 12 physics CBSE
