Answer
Verified
459.6k+ views
Hint: The acceleration is calculated from the force experienced by the body in the electric field and final velocity is calculated from the equation of motion.
It can be calculated by using Formulas:
1. $a = \dfrac{{qE}}{m}$
2. $v = u + at$
Step by step answer: A body of mass m = 20 g which has a charge q of 3.0 mC i.e., 3 ×10⁻3 C ( since 1 C = 103 mC). The initial velocity (u) is 20 m/s through which it enters a region of electric field. As the body enters the region, it experiences a force due to this electric field (E). The body continues to move in the same direction. So, the final velocity (v) of the body is positive i.e., v is positive.
The force (F) experienced by the mass m is provided by the electric field of the region in which the body enters.
Thus, $F = qE$
$\Rightarrow$ $ma = qE$
[$F = ma$ where a is the acceleration of the body of mass m]
$\Rightarrow$ $a = \dfrac{{qE}}{m}$
$\Rightarrow$ $ [ E = 80 N/C and m = 20 × 10⁻3g as 1 g = 10⁻3 kg]$
$\Rightarrow$ a = 12 m/s2
Now, The velocity (v) of the mass after time t = 3 sec is calculated by using the equation
$v = u + at$
$\Rightarrow$ $v = 20 + 12 \times 3$
$\therefore$ $v = 20 + 36 = 56$
Therefore, the final velocity of the mass after 3 sec is 56 m/s.
Note: The particle continues to move in the same direction. So, the sign of final velocity will be positive and hence, the acceleration will be also positive.
It can be calculated by using Formulas:
1. $a = \dfrac{{qE}}{m}$
2. $v = u + at$
Step by step answer: A body of mass m = 20 g which has a charge q of 3.0 mC i.e., 3 ×10⁻3 C ( since 1 C = 103 mC). The initial velocity (u) is 20 m/s through which it enters a region of electric field. As the body enters the region, it experiences a force due to this electric field (E). The body continues to move in the same direction. So, the final velocity (v) of the body is positive i.e., v is positive.
The force (F) experienced by the mass m is provided by the electric field of the region in which the body enters.
Thus, $F = qE$
$\Rightarrow$ $ma = qE$
[$F = ma$ where a is the acceleration of the body of mass m]
$\Rightarrow$ $a = \dfrac{{qE}}{m}$
$\Rightarrow$ $ [ E = 80 N/C and m = 20 × 10⁻3g as 1 g = 10⁻3 kg]$
$\Rightarrow$ a = 12 m/s2
Now, The velocity (v) of the mass after time t = 3 sec is calculated by using the equation
$v = u + at$
$\Rightarrow$ $v = 20 + 12 \times 3$
$\therefore$ $v = 20 + 36 = 56$
Therefore, the final velocity of the mass after 3 sec is 56 m/s.
Note: The particle continues to move in the same direction. So, the sign of final velocity will be positive and hence, the acceleration will be also positive.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers