Answer
Verified
386.4k+ views
Hint: The capacitance of a parallel plate capacitor needs to be found in this problem. The formula of a parallel plate capacitor is given by: \[C=\dfrac{K{{\in }_{0}}A}{d}\]. For capacitors in parallel to each other, the net capacitance is given by, ${{C}_{net}}={{C}_{1}}+{{C}_{2}}$. Further, for parallel plate capacitor, the charge of the capacitor is given by, $Q=CV$and the Electric field of the parallel plate capacitor is given by $E=Vd$.
Step by step solution:
Let’s make a more detailed diagram of the problem given.
From the problem, we are given that the slab of dielectric constant (K) in between the plates, covers an area of $\dfrac{A}{3}$. The rest of the capacitor is filled with air having dielectric constant (K=1). The division of this parallel plate capacitor makes it similar to two capacitors of capacitance $\left( {{C}_{1}} \right)$and $\left( {{C}_{2}} \right)$ which are parallel to each other. Therefore the net capacitance of this parallel plate capacitor (C) is given by: $C={{C}_{1}}+{{C}_{2}}$.
The capacitance of a parallel plate capacitor of dielectric constant (K) and area in between the parallel plate capacitor (A) and the distance between the plates of the capacitor (d) is: \[C=\dfrac{K{{\in }_{0}}A}{d}\].
Therefore, the capacitance $\left( {{C}_{1}} \right)$is: ${{C}_{1}}=\dfrac{K{{\in }_{0}}\left( \dfrac{A}{3} \right)}{d}\Rightarrow {{C}_{1}}=\dfrac{K{{\in }_{0}}A}{3d}$.
Similarly, the capacitance $\left( {{C}_{2}} \right)$ is: ${{C}_{2}}=\dfrac{K{{\in }_{0}}\left( \dfrac{2A}{3} \right)}{d}\Rightarrow {{C}_{2}}=\dfrac{(1){{\in }_{0}}(2A)}{3d}\Rightarrow {{C}_{2}}=\dfrac{2{{\in }_{0}}A}{3d}$.
Therefore the ratio of these capacitance become: \[\dfrac{{{C}_{1}}}{{{C}_{2}}}=\dfrac{\dfrac{K{{\in }_{0}}A}{3d}}{\dfrac{2{{\in }_{0}}A}{3d}}=\dfrac{K}{2}\Rightarrow \dfrac{{{C}_{2}}}{{{C}_{1}}}=\dfrac{2}{K}\].
Adding (1) on both sides of the above equation makes it: \[\dfrac{{{C}_{2}}}{{{C}_{1}}}+1=\dfrac{2}{K}+1\Rightarrow \dfrac{{{C}_{2}}}{{{C}_{1}}}+\dfrac{{{C}_{1}}}{{{C}_{1}}}=\dfrac{2}{K}+\dfrac{K}{K}\Rightarrow \dfrac{{{C}_{1}}+{{C}_{2}}}{{{C}_{1}}}=\dfrac{2+K}{K}\Rightarrow \dfrac{C}{{{C}_{1}}}=\dfrac{2+K}{K}\].
Therefore, the ratio of the capacitance of the whole capacitor, to the capacitance of part containing the dielectric slab (K) is: \[\dfrac{C}{{{C}_{1}}}=\dfrac{2+K}{K}\].
We also know that the amount of charge in a parallel plate capacitor is given$Q=CV$. In the current case, the capacitances of $\left( {{C}_{1}} \right)$and $\left( {{C}_{2}} \right)$ are both a part of the common capacitor (C). Hence, the potential (V) remains constant. Therefore: $Q\propto C$. This implies: \[\dfrac{{{Q}_{1}}}{{{Q}_{2}}}=\dfrac{{{C}_{1}}}{{{C}_{2}}}=\dfrac{K}{2}\Rightarrow \dfrac{{{Q}_{1}}}{{{Q}_{2}}}=\dfrac{K}{2}\].
The Electric field of a parallel plate capacitor is given by, $E=Vd$. For the current case, the potential remains constant, as the capacitances $\left( {{C}_{1}} \right)$and $\left( {{C}_{2}} \right)$ are both a part of the common capacitor (C). Therefore: $E\propto d$. For this case, the distance between the plates is constant. Hence, \[\dfrac{{{E}_{1}}}{{{E}_{2}}}=\dfrac{d}{d}=1\Rightarrow \dfrac{{{E}_{1}}}{{{E}_{2}}}=1\].
Therefore, the options A and D, are the solutions.
Note:
In this problem, when different dielectrics are kept in a parallel plate capacitor, horizontally one below the other, it is similar to two parallel plates capacitors being parallel to each other as in the image below.
Similarly, if there are two different dielectrics encased in a parallel plate capacitor vertically, one beside another, then it will be similar to two dielectrics in series with each other as in the image below.
Step by step solution:
Let’s make a more detailed diagram of the problem given.
From the problem, we are given that the slab of dielectric constant (K) in between the plates, covers an area of $\dfrac{A}{3}$. The rest of the capacitor is filled with air having dielectric constant (K=1). The division of this parallel plate capacitor makes it similar to two capacitors of capacitance $\left( {{C}_{1}} \right)$and $\left( {{C}_{2}} \right)$ which are parallel to each other. Therefore the net capacitance of this parallel plate capacitor (C) is given by: $C={{C}_{1}}+{{C}_{2}}$.
The capacitance of a parallel plate capacitor of dielectric constant (K) and area in between the parallel plate capacitor (A) and the distance between the plates of the capacitor (d) is: \[C=\dfrac{K{{\in }_{0}}A}{d}\].
Therefore, the capacitance $\left( {{C}_{1}} \right)$is: ${{C}_{1}}=\dfrac{K{{\in }_{0}}\left( \dfrac{A}{3} \right)}{d}\Rightarrow {{C}_{1}}=\dfrac{K{{\in }_{0}}A}{3d}$.
Similarly, the capacitance $\left( {{C}_{2}} \right)$ is: ${{C}_{2}}=\dfrac{K{{\in }_{0}}\left( \dfrac{2A}{3} \right)}{d}\Rightarrow {{C}_{2}}=\dfrac{(1){{\in }_{0}}(2A)}{3d}\Rightarrow {{C}_{2}}=\dfrac{2{{\in }_{0}}A}{3d}$.
Therefore the ratio of these capacitance become: \[\dfrac{{{C}_{1}}}{{{C}_{2}}}=\dfrac{\dfrac{K{{\in }_{0}}A}{3d}}{\dfrac{2{{\in }_{0}}A}{3d}}=\dfrac{K}{2}\Rightarrow \dfrac{{{C}_{2}}}{{{C}_{1}}}=\dfrac{2}{K}\].
Adding (1) on both sides of the above equation makes it: \[\dfrac{{{C}_{2}}}{{{C}_{1}}}+1=\dfrac{2}{K}+1\Rightarrow \dfrac{{{C}_{2}}}{{{C}_{1}}}+\dfrac{{{C}_{1}}}{{{C}_{1}}}=\dfrac{2}{K}+\dfrac{K}{K}\Rightarrow \dfrac{{{C}_{1}}+{{C}_{2}}}{{{C}_{1}}}=\dfrac{2+K}{K}\Rightarrow \dfrac{C}{{{C}_{1}}}=\dfrac{2+K}{K}\].
Therefore, the ratio of the capacitance of the whole capacitor, to the capacitance of part containing the dielectric slab (K) is: \[\dfrac{C}{{{C}_{1}}}=\dfrac{2+K}{K}\].
We also know that the amount of charge in a parallel plate capacitor is given$Q=CV$. In the current case, the capacitances of $\left( {{C}_{1}} \right)$and $\left( {{C}_{2}} \right)$ are both a part of the common capacitor (C). Hence, the potential (V) remains constant. Therefore: $Q\propto C$. This implies: \[\dfrac{{{Q}_{1}}}{{{Q}_{2}}}=\dfrac{{{C}_{1}}}{{{C}_{2}}}=\dfrac{K}{2}\Rightarrow \dfrac{{{Q}_{1}}}{{{Q}_{2}}}=\dfrac{K}{2}\].
The Electric field of a parallel plate capacitor is given by, $E=Vd$. For the current case, the potential remains constant, as the capacitances $\left( {{C}_{1}} \right)$and $\left( {{C}_{2}} \right)$ are both a part of the common capacitor (C). Therefore: $E\propto d$. For this case, the distance between the plates is constant. Hence, \[\dfrac{{{E}_{1}}}{{{E}_{2}}}=\dfrac{d}{d}=1\Rightarrow \dfrac{{{E}_{1}}}{{{E}_{2}}}=1\].
Therefore, the options A and D, are the solutions.
Note:
In this problem, when different dielectrics are kept in a parallel plate capacitor, horizontally one below the other, it is similar to two parallel plates capacitors being parallel to each other as in the image below.
Similarly, if there are two different dielectrics encased in a parallel plate capacitor vertically, one beside another, then it will be similar to two dielectrics in series with each other as in the image below.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE