Answer
Verified
432.9k+ views
Hint: The charge of a disconnected capacitor remains the same before and after the dielectric has been placed. The voltage drops during after the dielectric has been placed.
Formula used: In this solution we will be using the following formulae;
\[Q = CV\]where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Complete Step-by-Step solution:
To solve, we note that the charge before and after the dielectric has been placed are the same, since the capacitor was disconnected before it was done.
Generally,
\[Q = CV\] where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
Capacitance is
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
The initial capacitance is
\[{C_0} = \dfrac{{\varepsilon A}}{d}\] (since \[K = 1\] for air)
Hence, charge is,
\[Q = \dfrac{{\varepsilon A}}{d}V\]
The final capacitance
\[C = \dfrac{{K\varepsilon A}}{d}\]
Hence, charge is also
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f}\]
Hence, by equating, we have
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f} = \dfrac{{\varepsilon A}}{d}V\]
Then, by simplification, we have
\[{V_f} = \dfrac{V}{K}\].
Now the potential energy is given as
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
Hence, the initial and final energy are respectively
\[{U_i} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\]
\[{U_f} = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)V_f^2 = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{{{K^2}}} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K}\]
The work done is
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Hence,
\[W = - \left[ {\dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K} - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}} \right]\]
\[ \Rightarrow W = - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\left[ {\dfrac{1}{K} - 1} \right]\]
By rearranging, we have
\[W = \dfrac{{\varepsilon A}}{{2d}}{V^2}\left[ {1 - \dfrac{1}{K}} \right]\]
Hence, the correct option is A
Note: Alternatively, without lengthy calculations and using some reasoning, we can get the answer. We can reason as follows: first work done is a difference between different energy states, hence the answer cannot be C or D, also, energy is \[\dfrac{1}{2}C{V^2}\], hence, the answer cannot be B either. Hence, the answer is A.
Formula used: In this solution we will be using the following formulae;
\[Q = CV\]where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Complete Step-by-Step solution:
To solve, we note that the charge before and after the dielectric has been placed are the same, since the capacitor was disconnected before it was done.
Generally,
\[Q = CV\] where \[Q\] is the charge on the capacitor, \[C\] is the capacitance of the capacitor and \[V\] is the voltage across its plate.
Capacitance is
\[C = \dfrac{{K\varepsilon A}}{d}\] where \[K\] is the dielectric constant for the material between the plate, \[\varepsilon \] is the permittivity of free space, \[A\] is the area of the capacitor plates, and \[d\] is the distance between the plates.
The initial capacitance is
\[{C_0} = \dfrac{{\varepsilon A}}{d}\] (since \[K = 1\] for air)
Hence, charge is,
\[Q = \dfrac{{\varepsilon A}}{d}V\]
The final capacitance
\[C = \dfrac{{K\varepsilon A}}{d}\]
Hence, charge is also
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f}\]
Hence, by equating, we have
\[Q = \dfrac{{K\varepsilon A}}{d}{V_f} = \dfrac{{\varepsilon A}}{d}V\]
Then, by simplification, we have
\[{V_f} = \dfrac{V}{K}\].
Now the potential energy is given as
\[U = \dfrac{1}{2}C{V^2}\] where \[U\] is the potential energy (or energy) possessed by a capacitor.
Hence, the initial and final energy are respectively
\[{U_i} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\]
\[{U_f} = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)V_f^2 = \dfrac{1}{2}\left( {\dfrac{{K\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{{{K^2}}} = \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K}\]
The work done is
\[W = - \Delta U\] where \[W\] is the work done, and \[\Delta \] signifies change in a quantity (in this case, \[U\])
Hence,
\[W = - \left[ {\dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right)\dfrac{{{V^2}}}{K} - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}} \right]\]
\[ \Rightarrow W = - \dfrac{1}{2}\left( {\dfrac{{\varepsilon A}}{d}} \right){V^2}\left[ {\dfrac{1}{K} - 1} \right]\]
By rearranging, we have
\[W = \dfrac{{\varepsilon A}}{{2d}}{V^2}\left[ {1 - \dfrac{1}{K}} \right]\]
Hence, the correct option is A
Note: Alternatively, without lengthy calculations and using some reasoning, we can get the answer. We can reason as follows: first work done is a difference between different energy states, hence the answer cannot be C or D, also, energy is \[\dfrac{1}{2}C{V^2}\], hence, the answer cannot be B either. Hence, the answer is A.
Recently Updated Pages
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE