Answer
Verified
449.4k+ views
Hint: Start by assuming the time, when the particle will be at the mean position .Then using the SHM equation for displacement of particle $x=A\sin(\omega t)$, find the time for the particle to complete $\dfrac{5}{8}$ oscillations
Formula: $x=A\sin(\omega t)$
Complete answer:
SHM or simple harmonic motion is the motion caused by the restoring force; it is directly proportional to the displacement of the object from its mean position. Clearly, this is a reactive force, which is always directed towards the mean. Let us assume the equation for displacement of particle to be given as $x=A\sin(\omega t)$, then the acceleration of the particle is given by, $a(t)=-\omega^{2}x(t)$. We know that $\omega$ is the angular velocity and is given as $\omega=\dfrac{2\pi}{T}$, where $T$ is the time period of the motion.
Given that the time period of the particle is $T$. Let the total distance covered by the particle during the time period T be $4\;A$. Then the distance covered during $\dfrac{5}{8}$ can be written as $\dfrac{5}{8}\times 4A=\dfrac{5A}{2}$
Also, $\dfrac{5A}{2}$ can be written in terms of $\dfrac{A}{2}$ as $\dfrac{5A}{2}=2A+\dfrac{A}{2}$
Now, from the equation of the particle, we can find the time $t$ taken due to $\dfrac{A}{2}$ distance. Consider the equation$\dfrac{A}{2}=A sin\omega t$
$\implies \dfrac{A}{2}=A sin \dfrac{2\pi}{T}t$
$\implies \dfrac{1}{2}=sin\dfrac{2\pi}{T}t$
$\implies sin\dfrac{\pi}{6}=sin\dfrac{2\pi}{T}t$
$\implies t=\dfrac{T}{12}$
Similarly, the time $t\prime$ taken to cover $2\;A$ is given as, $2A=Asin\dfrac{2\pi}{T}t\prime$
$\implies 2\times sin \dfrac{\pi}{2}=sin\dfrac{2\pi}{T}t\prime$
$\implies t\prime=\dfrac{T}{2}$
Then total time take to complete $\dfrac{5}{8}$ oscillations is given as $T\prime=t+t\prime$
$\implies T\prime=\dfrac{T}{12}+\dfrac{T}{2}$
$\therefore T\prime=\dfrac{7T}{12}$
Thus the correct answer is option \[D.\dfrac{7T}{12}\]
Note:
Remember SHM motions are sinusoidal in nature. Here, we are assuming, the particle is at mean when, $t=0$. This makes the further steps easier. Then, it will take time $T$ for the particle to cover one oscillation. For simplification, we are finding the time taken due to the small parts of the oscillation
Formula: $x=A\sin(\omega t)$
Complete answer:
SHM or simple harmonic motion is the motion caused by the restoring force; it is directly proportional to the displacement of the object from its mean position. Clearly, this is a reactive force, which is always directed towards the mean. Let us assume the equation for displacement of particle to be given as $x=A\sin(\omega t)$, then the acceleration of the particle is given by, $a(t)=-\omega^{2}x(t)$. We know that $\omega$ is the angular velocity and is given as $\omega=\dfrac{2\pi}{T}$, where $T$ is the time period of the motion.
Given that the time period of the particle is $T$. Let the total distance covered by the particle during the time period T be $4\;A$. Then the distance covered during $\dfrac{5}{8}$ can be written as $\dfrac{5}{8}\times 4A=\dfrac{5A}{2}$
Also, $\dfrac{5A}{2}$ can be written in terms of $\dfrac{A}{2}$ as $\dfrac{5A}{2}=2A+\dfrac{A}{2}$
Now, from the equation of the particle, we can find the time $t$ taken due to $\dfrac{A}{2}$ distance. Consider the equation$\dfrac{A}{2}=A sin\omega t$
$\implies \dfrac{A}{2}=A sin \dfrac{2\pi}{T}t$
$\implies \dfrac{1}{2}=sin\dfrac{2\pi}{T}t$
$\implies sin\dfrac{\pi}{6}=sin\dfrac{2\pi}{T}t$
$\implies t=\dfrac{T}{12}$
Similarly, the time $t\prime$ taken to cover $2\;A$ is given as, $2A=Asin\dfrac{2\pi}{T}t\prime$
$\implies 2\times sin \dfrac{\pi}{2}=sin\dfrac{2\pi}{T}t\prime$
$\implies t\prime=\dfrac{T}{2}$
Then total time take to complete $\dfrac{5}{8}$ oscillations is given as $T\prime=t+t\prime$
$\implies T\prime=\dfrac{T}{12}+\dfrac{T}{2}$
$\therefore T\prime=\dfrac{7T}{12}$
Thus the correct answer is option \[D.\dfrac{7T}{12}\]
Note:
Remember SHM motions are sinusoidal in nature. Here, we are assuming, the particle is at mean when, $t=0$. This makes the further steps easier. Then, it will take time $T$ for the particle to cover one oscillation. For simplification, we are finding the time taken due to the small parts of the oscillation
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE