Answer
Verified
428.1k+ views
Hint: This question can be solved by application of Newton’s law of gravity. The square of the time period depends inversely on the acceleration due to gravity and depends on the separation from the centre.
Formula used: The formulae used in the solution are given here.
The time period of a pendulum is given by, $ T = 2\pi \sqrt {\dfrac{L}{g}} $ where $ L $ is the length of the pendulum from the point of suspension to the centre of the bob and $ g $ is the acceleration due to gravity.
Complete step by step solution:
It has been given that, $ {g_{moon}} = \dfrac{1}{6}{g_{earth}} $ . The significance of this statement is that the value of acceleration due to gravity on the moon is one-sixth the value on earth.
The time period of a simple pendulum is defined as the time taken by the pendulum to finish one full oscillation and is denoted by “ $ T $ ”.
For a pendulum whose length, from the point of suspension to the centre of the bob is $ L $ , and acceleration due to gravity is given by $ g $ ,
Time period is given by the formula, $ T = 2\pi \sqrt {\dfrac{L}{g}} $ .
Since it has been given that, $ {g_{moon}} = \dfrac{1}{6}{g_{earth}} $ ,
The time of the pendulum on the Earth surface = $ {T_{Earth}} = 2\pi \sqrt {\dfrac{L}{{{g_{earth}}}}} $ .
The time of the pendulum on the surface of the moon = $ {T_{Moon}} = 2\pi \sqrt {\dfrac{L}{{{g_{moon}}}}} $ where $ {g_{moon}} $ is the acceleration due to gravity on the moon.
$ {T_{Moon}} = 2\pi \sqrt {\dfrac{L}{{{g_{moon}}}}} = 2\pi \sqrt {\dfrac{L}{{\dfrac{1}{6}{g_{earth}}}}} $
Simplifying the equation,
$ {T_{Moon}} = 2\pi \sqrt {\dfrac{{6L}}{{{g_{earth}}}}} $ .
Since, the time period of a pendulum is inversely proportional to the square root of the acceleration due to gravity, thus on decrease of the value of acceleration due to gravity, the time period increases.
This implies that the pendulum becomes slower.
Thus, $ {T_{Moon}} = 2\pi \sqrt {\dfrac{{6L}}{{{g_{earth}}}}} = \sqrt 6 {T_{Earth}} $ .
Thus, the correct answer is Option D.
Note:
The Moon's surface gravity is weaker because it is far less massive than Earth. A body's surface gravity is proportional to its mass, but inversely proportional to the square of its radius.
Formula used: The formulae used in the solution are given here.
The time period of a pendulum is given by, $ T = 2\pi \sqrt {\dfrac{L}{g}} $ where $ L $ is the length of the pendulum from the point of suspension to the centre of the bob and $ g $ is the acceleration due to gravity.
Complete step by step solution:
It has been given that, $ {g_{moon}} = \dfrac{1}{6}{g_{earth}} $ . The significance of this statement is that the value of acceleration due to gravity on the moon is one-sixth the value on earth.
The time period of a simple pendulum is defined as the time taken by the pendulum to finish one full oscillation and is denoted by “ $ T $ ”.
For a pendulum whose length, from the point of suspension to the centre of the bob is $ L $ , and acceleration due to gravity is given by $ g $ ,
Time period is given by the formula, $ T = 2\pi \sqrt {\dfrac{L}{g}} $ .
Since it has been given that, $ {g_{moon}} = \dfrac{1}{6}{g_{earth}} $ ,
The time of the pendulum on the Earth surface = $ {T_{Earth}} = 2\pi \sqrt {\dfrac{L}{{{g_{earth}}}}} $ .
The time of the pendulum on the surface of the moon = $ {T_{Moon}} = 2\pi \sqrt {\dfrac{L}{{{g_{moon}}}}} $ where $ {g_{moon}} $ is the acceleration due to gravity on the moon.
$ {T_{Moon}} = 2\pi \sqrt {\dfrac{L}{{{g_{moon}}}}} = 2\pi \sqrt {\dfrac{L}{{\dfrac{1}{6}{g_{earth}}}}} $
Simplifying the equation,
$ {T_{Moon}} = 2\pi \sqrt {\dfrac{{6L}}{{{g_{earth}}}}} $ .
Since, the time period of a pendulum is inversely proportional to the square root of the acceleration due to gravity, thus on decrease of the value of acceleration due to gravity, the time period increases.
This implies that the pendulum becomes slower.
Thus, $ {T_{Moon}} = 2\pi \sqrt {\dfrac{{6L}}{{{g_{earth}}}}} = \sqrt 6 {T_{Earth}} $ .
Thus, the correct answer is Option D.
Note:
The Moon's surface gravity is weaker because it is far less massive than Earth. A body's surface gravity is proportional to its mass, but inversely proportional to the square of its radius.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE