Answer
Verified
460.5k+ views
Hint:Here,we are going to apply the concept of induced emf and Lenz’s law and in the given problem magnetic field is given in terms of time. So, first calculate the emf for one turn and then multiply it with N number of turns to get the required answer.
Formula used:
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
Where,
${\phi _B} = $ Magnetic flux $(\overrightarrow B .\overrightarrow A )$
B $ = $ magnetic field, A $ = $ Area
Complete step by step answer:
Given that the plane spiral shape is made up of concentric loops, having different radii from 0 to a.
We know that induced emf due to loop is
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
${\phi _B} = \overrightarrow B .\overrightarrow A $
So, $e = \dfrac{{ - d(\overrightarrow B .\overrightarrow A )}}{{dt}}$
Given that $B = {B_0}\sin \omega t$
So, $e = - A\dfrac{{dB}}{{dt}}$
Where A $ = $ area i.e., $\pi {r^2}$
$e = - \pi {r^2}\dfrac{{d({B_0}\sin \omega t)}}{{dt}}$
$\Rightarrow e = - {B_0}\pi {r^2}\omega \cos \omega t$ …...(1)
So, the total induced emf is
$e = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)dN} $ …..(2)
Where $\pi {r^2}\omega \cos \omega t$ is the contribution of one turn of radius r.
dN $ = $ Number of turns in the interval r to $r + dr$
$\Rightarrow dN = \left( {\dfrac{N}{a}} \right)dr$ …..(3)
From equation 2 and 3
$\Rightarrow\varepsilon = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)} \dfrac{N}{a}dr$
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\int\limits_0^a {{r^2}dr} $
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\left( {\dfrac{{{r^3}}}{3}} \right)_0^a$
$\Rightarrow\varepsilon = \dfrac{{ - \pi {B_0}\omega N\cos \omega t}}{a}\left( {\dfrac{{{a^3}}}{3} - 0} \right)$
$\therefore\varepsilon = - \dfrac{1}{3}\pi {a^2}{B_0}N\omega \cos \omega t$
Hence the amplitude of emf induced in spiral is $\dfrac{1}{3}\pi {a^2}{B_0}N\omega $
So, option A is the correct answer.
Note: In problems of induced emf students may get confused between emf for one turn and for complete spiral. So, always remember to multiply one turn emf with the total number of turns.
Formula used:
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
Where,
${\phi _B} = $ Magnetic flux $(\overrightarrow B .\overrightarrow A )$
B $ = $ magnetic field, A $ = $ Area
Complete step by step answer:
Given that the plane spiral shape is made up of concentric loops, having different radii from 0 to a.
We know that induced emf due to loop is
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
${\phi _B} = \overrightarrow B .\overrightarrow A $
So, $e = \dfrac{{ - d(\overrightarrow B .\overrightarrow A )}}{{dt}}$
Given that $B = {B_0}\sin \omega t$
So, $e = - A\dfrac{{dB}}{{dt}}$
Where A $ = $ area i.e., $\pi {r^2}$
$e = - \pi {r^2}\dfrac{{d({B_0}\sin \omega t)}}{{dt}}$
$\Rightarrow e = - {B_0}\pi {r^2}\omega \cos \omega t$ …...(1)
So, the total induced emf is
$e = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)dN} $ …..(2)
Where $\pi {r^2}\omega \cos \omega t$ is the contribution of one turn of radius r.
dN $ = $ Number of turns in the interval r to $r + dr$
$\Rightarrow dN = \left( {\dfrac{N}{a}} \right)dr$ …..(3)
From equation 2 and 3
$\Rightarrow\varepsilon = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)} \dfrac{N}{a}dr$
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\int\limits_0^a {{r^2}dr} $
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\left( {\dfrac{{{r^3}}}{3}} \right)_0^a$
$\Rightarrow\varepsilon = \dfrac{{ - \pi {B_0}\omega N\cos \omega t}}{a}\left( {\dfrac{{{a^3}}}{3} - 0} \right)$
$\therefore\varepsilon = - \dfrac{1}{3}\pi {a^2}{B_0}N\omega \cos \omega t$
Hence the amplitude of emf induced in spiral is $\dfrac{1}{3}\pi {a^2}{B_0}N\omega $
So, option A is the correct answer.
Note: In problems of induced emf students may get confused between emf for one turn and for complete spiral. So, always remember to multiply one turn emf with the total number of turns.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE