Answer
Verified
449.7k+ views
Hint: Electric dipoles will be having two charges definitely. Just like magnetic dipoles we can consider electric dipoles. In a magnetic dipole, the magnetic moment vector goes from south pole to north pole inside the magnet. We resolve that along axial and equatorial to get the magnetic fields. Similarly in electric dipole, the dipole moment vector goes from negative charge to positive charge.
Formula used:
$\eqalign{
& {E_{axial}} = \dfrac{{2k\mathop p\limits^ \to }}{{{r^3}}} \cr
& {E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}} \cr
& {V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}} \cr} $
Complete answer:
Electric field can be produced by electric dipole and due to that field potential will also be present
The position of the point determines the direction of electric field and magnitude of potential
If the point is located on the axis then we have one formula to calculate the electric field over there and if the point is located on the equatorial point then we have another formula for the electric field.
For axial point the electric field will be
${E_{axial}} = \dfrac{{2k\mathop p\limits^ \to }}{{{r^3}}}$
‘r’ is the distance between the center of dipole and the point P.
So the electric field will be along the direction of electric moment vector($\mathop p\limits^ \to $)
For equatorial point the electric field will be
${E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}}$
So the equatorial electric field will be anti parallel to the direction of electric dipole moment vector($\mathop p\limits^ \to $)
The point P on the y axis at a distance d will be equatorial point for the dipole and the filed will be
$\eqalign{
& {E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}} \cr
& \therefore {E_P} = \dfrac{{ - \mathop p\limits^ \to }}{{4\pi {\varepsilon _0}{d^3}}} \cr} $
Potential at point P is given as
${V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}}$
Where theta is the angle between the dipole moment vector and the line joining the dipole and point. For all equatorial points theta will be 90 degrees. So the cosine of 90 degrees will be zero. So potential will be zero.
${V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}}$
$\eqalign{
& \Rightarrow {V_P} = \dfrac{{kp\cos {{90}^0}}}{{{r^2}}} \cr
& \therefore {V_P} = 0 \cr} $
All these formulas are valid for short dipoles only.
Hence option D is the answer.
Note:
If the point given by them is not a perfect axial point nor perfect equatorial point i.e an oblique point then we will resolve the electric dipole moment vector into axial direction and along the equatorial direction. After resolving we will find out the direction of electric field components at that point and finally we will find the resultant.
Formula used:
$\eqalign{
& {E_{axial}} = \dfrac{{2k\mathop p\limits^ \to }}{{{r^3}}} \cr
& {E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}} \cr
& {V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}} \cr} $
Complete answer:
Electric field can be produced by electric dipole and due to that field potential will also be present
The position of the point determines the direction of electric field and magnitude of potential
If the point is located on the axis then we have one formula to calculate the electric field over there and if the point is located on the equatorial point then we have another formula for the electric field.
For axial point the electric field will be
${E_{axial}} = \dfrac{{2k\mathop p\limits^ \to }}{{{r^3}}}$
‘r’ is the distance between the center of dipole and the point P.
So the electric field will be along the direction of electric moment vector($\mathop p\limits^ \to $)
For equatorial point the electric field will be
${E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}}$
So the equatorial electric field will be anti parallel to the direction of electric dipole moment vector($\mathop p\limits^ \to $)
The point P on the y axis at a distance d will be equatorial point for the dipole and the filed will be
$\eqalign{
& {E_{equitorial}} = \dfrac{{ - k\mathop p\limits^ \to }}{{{r^3}}} \cr
& \therefore {E_P} = \dfrac{{ - \mathop p\limits^ \to }}{{4\pi {\varepsilon _0}{d^3}}} \cr} $
Potential at point P is given as
${V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}}$
Where theta is the angle between the dipole moment vector and the line joining the dipole and point. For all equatorial points theta will be 90 degrees. So the cosine of 90 degrees will be zero. So potential will be zero.
${V_\theta } = \dfrac{{kp\cos \theta }}{{{r^2}}}$
$\eqalign{
& \Rightarrow {V_P} = \dfrac{{kp\cos {{90}^0}}}{{{r^2}}} \cr
& \therefore {V_P} = 0 \cr} $
All these formulas are valid for short dipoles only.
Hence option D is the answer.
Note:
If the point given by them is not a perfect axial point nor perfect equatorial point i.e an oblique point then we will resolve the electric dipole moment vector into axial direction and along the equatorial direction. After resolving we will find out the direction of electric field components at that point and finally we will find the resultant.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers