Answer
Verified
459.3k+ views
Hint: Use lens formula to determine the image distance.
Differentiate the lens formula to determine the formula for rate of movement of image with respect to time.
Formula used:
\[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\]
Here, f is the focal length, v is the image distance and u is the object distance.
Complete step by step answer:
We know that the focal length of the convex lens is positive. Also, the object distance from the lens is taken as negative.
We have the lens formula,
\[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\]
Here, f is the focal length, v is the image distance and u is the object distance.
Rearrange the above equation to determine the image distance as follows,
\[v = \dfrac{{fu}}{{u + f}}\]
Substitute 10 cm for f and \[ - 15\,cm\] for u in the above equation.
\[v = \dfrac{{\left( {10\,cm} \right)\left( { - 15\,cm} \right)}}{{ - 15\,cm + 10\,cm}}\]
Differentiate the lens formula with respect to time t as follows,
\[0 = - \dfrac{1}{{{v^2}}}\dfrac{{dv}}{{dt}} + \dfrac{1}{{{u^2}}}\dfrac{{du}}{{dt}}\]
\[ \Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{dv}}{{dt}} = \dfrac{1}{{{u^2}}}\dfrac{{du}}{{dt}}\]
\[\therefore \dfrac{{dv}}{{dt}} = \dfrac{{{v^2}}}{{{u^2}}}\dfrac{{du}}{{dt}}\]
Substitute \[ + 30\,cm\] for v, \[ - 15\,cm\] for u and \[ + 2\,cm - {s^{ - 2}}\] for \[\dfrac{{du}}{{dt}}\] in the above equation.
\[\dfrac{{dv}}{{dt}} = \dfrac{{{{\left( {30\,cm} \right)}^2}}}{{{{\left( { - 15\,cm} \right)}^2}}}\left( {2\,cm - {s^{ - 2}}} \right)\]
\[\dfrac{{dv}}{{dt}} = \left( 4 \right)\left( {2\,cm - {s^{ - 2}}} \right)\]
\[\dfrac{{dv}}{{dt}} = + 8\,cm - {s^{ - 2}}\]
The positive sign in the above equation implies that the image is moving along the positive direction of the x-axis which is away from the lens
So, the correct answer is “Option D”.
Note:
Read the properties of the image formed by the convex lens. The focal length of the convex lens is positive whereas the focal length of the concave lens is negative. The object distance or source distance is negative while the image distance is positive.
Differentiate the lens formula to determine the formula for rate of movement of image with respect to time.
Formula used:
\[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\]
Here, f is the focal length, v is the image distance and u is the object distance.
Complete step by step answer:
We know that the focal length of the convex lens is positive. Also, the object distance from the lens is taken as negative.
We have the lens formula,
\[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\]
Here, f is the focal length, v is the image distance and u is the object distance.
Rearrange the above equation to determine the image distance as follows,
\[v = \dfrac{{fu}}{{u + f}}\]
Substitute 10 cm for f and \[ - 15\,cm\] for u in the above equation.
\[v = \dfrac{{\left( {10\,cm} \right)\left( { - 15\,cm} \right)}}{{ - 15\,cm + 10\,cm}}\]
Differentiate the lens formula with respect to time t as follows,
\[0 = - \dfrac{1}{{{v^2}}}\dfrac{{dv}}{{dt}} + \dfrac{1}{{{u^2}}}\dfrac{{du}}{{dt}}\]
\[ \Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{dv}}{{dt}} = \dfrac{1}{{{u^2}}}\dfrac{{du}}{{dt}}\]
\[\therefore \dfrac{{dv}}{{dt}} = \dfrac{{{v^2}}}{{{u^2}}}\dfrac{{du}}{{dt}}\]
Substitute \[ + 30\,cm\] for v, \[ - 15\,cm\] for u and \[ + 2\,cm - {s^{ - 2}}\] for \[\dfrac{{du}}{{dt}}\] in the above equation.
\[\dfrac{{dv}}{{dt}} = \dfrac{{{{\left( {30\,cm} \right)}^2}}}{{{{\left( { - 15\,cm} \right)}^2}}}\left( {2\,cm - {s^{ - 2}}} \right)\]
\[\dfrac{{dv}}{{dt}} = \left( 4 \right)\left( {2\,cm - {s^{ - 2}}} \right)\]
\[\dfrac{{dv}}{{dt}} = + 8\,cm - {s^{ - 2}}\]
The positive sign in the above equation implies that the image is moving along the positive direction of the x-axis which is away from the lens
So, the correct answer is “Option D”.
Note:
Read the properties of the image formed by the convex lens. The focal length of the convex lens is positive whereas the focal length of the concave lens is negative. The object distance or source distance is negative while the image distance is positive.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE