Answer
Verified
411k+ views
Hint: Consider marked price as $100$ and apply conditions. First, we have to consider the market price as 100 and find the S.P, from which we are going to find it to equal with the 90% of L.P. We will be able to find the L.P, then after that we will be able to find the new selling price of the value. Then, from the new selling price, we will subtract it from the marked price and then we will find the gain.
Complete step by step solution:
First, let us consider the marked price as $Rs.\,100$, then in the question we are given that the profit is made is \[20\% \]n which means its selling price is $Rs.120$, this value is obtained when a discount of \[10\% \] is applied on the list price, so it means that
\[90\% {\text{ }}of\;L.P = Rs120\]
From, this we can find the value of L.P
From which we get
\[
\Rightarrow L.P = 120 \times \dfrac{{100}}{{90}} \\
\Rightarrow L.P = \dfrac{{400}}{3} \\
\], i
So, it’s asked that when a discount of \[20\% \] is applied what will the profit be made
New $S.P = 80\% \,\,of\,\dfrac{{400}}{3} = \dfrac{{320}}{3}$
We have found the new selling price, to find the gain/profit, we will subtract it from the original selling price.
$
\Rightarrow Gain = \dfrac{{320}}{3} - 100 \\
\Rightarrow 6\dfrac{2}{3}\% \\
$
Hence the correct answer is option ‘B’.
Note: Since, we have no initial value that is why we have to consider the marked price as 100, such that we can have further calculations easily and also, we have to read the question well, because we have to form an expression which gets us the final profit value.
Complete step by step solution:
First, let us consider the marked price as $Rs.\,100$, then in the question we are given that the profit is made is \[20\% \]n which means its selling price is $Rs.120$, this value is obtained when a discount of \[10\% \] is applied on the list price, so it means that
\[90\% {\text{ }}of\;L.P = Rs120\]
From, this we can find the value of L.P
From which we get
\[
\Rightarrow L.P = 120 \times \dfrac{{100}}{{90}} \\
\Rightarrow L.P = \dfrac{{400}}{3} \\
\], i
So, it’s asked that when a discount of \[20\% \] is applied what will the profit be made
New $S.P = 80\% \,\,of\,\dfrac{{400}}{3} = \dfrac{{320}}{3}$
We have found the new selling price, to find the gain/profit, we will subtract it from the original selling price.
$
\Rightarrow Gain = \dfrac{{320}}{3} - 100 \\
\Rightarrow 6\dfrac{2}{3}\% \\
$
Hence the correct answer is option ‘B’.
Note: Since, we have no initial value that is why we have to consider the marked price as 100, such that we can have further calculations easily and also, we have to read the question well, because we have to form an expression which gets us the final profit value.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What was the Metternich system and how did it provide class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE