Answer
Verified
420.9k+ views
Hint: Consider marked price as $100$ and apply conditions. First, we have to consider the market price as 100 and find the S.P, from which we are going to find it to equal with the 90% of L.P. We will be able to find the L.P, then after that we will be able to find the new selling price of the value. Then, from the new selling price, we will subtract it from the marked price and then we will find the gain.
Complete step by step solution:
First, let us consider the marked price as $Rs.\,100$, then in the question we are given that the profit is made is \[20\% \]n which means its selling price is $Rs.120$, this value is obtained when a discount of \[10\% \] is applied on the list price, so it means that
\[90\% {\text{ }}of\;L.P = Rs120\]
From, this we can find the value of L.P
From which we get
\[
\Rightarrow L.P = 120 \times \dfrac{{100}}{{90}} \\
\Rightarrow L.P = \dfrac{{400}}{3} \\
\], i
So, it’s asked that when a discount of \[20\% \] is applied what will the profit be made
New $S.P = 80\% \,\,of\,\dfrac{{400}}{3} = \dfrac{{320}}{3}$
We have found the new selling price, to find the gain/profit, we will subtract it from the original selling price.
$
\Rightarrow Gain = \dfrac{{320}}{3} - 100 \\
\Rightarrow 6\dfrac{2}{3}\% \\
$
Hence the correct answer is option ‘B’.
Note: Since, we have no initial value that is why we have to consider the marked price as 100, such that we can have further calculations easily and also, we have to read the question well, because we have to form an expression which gets us the final profit value.
Complete step by step solution:
First, let us consider the marked price as $Rs.\,100$, then in the question we are given that the profit is made is \[20\% \]n which means its selling price is $Rs.120$, this value is obtained when a discount of \[10\% \] is applied on the list price, so it means that
\[90\% {\text{ }}of\;L.P = Rs120\]
From, this we can find the value of L.P
From which we get
\[
\Rightarrow L.P = 120 \times \dfrac{{100}}{{90}} \\
\Rightarrow L.P = \dfrac{{400}}{3} \\
\], i
So, it’s asked that when a discount of \[20\% \] is applied what will the profit be made
New $S.P = 80\% \,\,of\,\dfrac{{400}}{3} = \dfrac{{320}}{3}$
We have found the new selling price, to find the gain/profit, we will subtract it from the original selling price.
$
\Rightarrow Gain = \dfrac{{320}}{3} - 100 \\
\Rightarrow 6\dfrac{2}{3}\% \\
$
Hence the correct answer is option ‘B’.
Note: Since, we have no initial value that is why we have to consider the marked price as 100, such that we can have further calculations easily and also, we have to read the question well, because we have to form an expression which gets us the final profit value.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE