Answer
Verified
471.6k+ views
Hint: Speed of light in any medium is always less than that of speed of light in vacuum. Hence, from the definition of refractive index we can easily come to a conclusion whether the ray of light will bend or move away from the normal.
Complete solution:
Let us first define the refractive index of a substance.
Refractive index of a medium for a light of given wavelength can be defined as the ratio of speed of light in vacuum to that of the speed in the medium
Mathematically expressed as $\eta =\dfrac{c}{v}$ where c is the speed of light in vacuum and v is the speed of light in medium.
So, in the above diagram a ray of light is incident on the surface AB at an angle i of the denser medium gets refracted at an angle r, hits the surface DC at an angle r and then comes out of the medium at an angle i.
Using Snell’s law of refraction, refractive index of denser medium with respect to rarer medium is given by,
${{\eta }_{BA}}=\dfrac{\operatorname{Sin}i}{\operatorname{Sin}r}=\dfrac{{{\eta }_{B}}}{{{\eta }_{A}}}$
Speed of light in the rarer medium is always greater than the denser medium ,
Using the general definition of refractive index Snell law can be written as,
$\dfrac{\operatorname{Sin}i}{\operatorname{Sin}r}=\dfrac{{{\eta }_{B}}}{{{\eta }_{A}}}=\dfrac{\dfrac{\text{speed of light in vacuum}}{\text{speed of light in B}}}{\dfrac{\text{speed of light in vacuum}}{\text{speed of light in A}}}$
After cancelling similar terms,
$\dfrac{\operatorname{Sin}i}{\operatorname{Sin}r}=\dfrac{\text{speed of light in A}}{\text{speed of light in B}}$
If we consider the above equation we know that speed of light in medium A is greater than in medium B. Hence,
$\operatorname{Sin}i>\operatorname{Sin}r$ implies that $i>r$
Hence the light bends as it moves from rarer to denser medium. Therefore the statement is true.
Additional information:
There is a better analogy to understand the above situation. If the light had to continue the same path in the denser medium it would have taken more time to come out of the medium. Since it bends it comparatively takes less time, as light wants to travel the fastest.
Note: When a ray of light enters from a rarer to denser medium light bends. But if the ray light moves from denser to rarer medium light moves away from the normal. Since the speed of light changes as it enters from a rarer to denser medium the frequency of light does not change but its wavelength changes.
Complete solution:
Let us first define the refractive index of a substance.
Refractive index of a medium for a light of given wavelength can be defined as the ratio of speed of light in vacuum to that of the speed in the medium
Mathematically expressed as $\eta =\dfrac{c}{v}$ where c is the speed of light in vacuum and v is the speed of light in medium.
So, in the above diagram a ray of light is incident on the surface AB at an angle i of the denser medium gets refracted at an angle r, hits the surface DC at an angle r and then comes out of the medium at an angle i.
Using Snell’s law of refraction, refractive index of denser medium with respect to rarer medium is given by,
${{\eta }_{BA}}=\dfrac{\operatorname{Sin}i}{\operatorname{Sin}r}=\dfrac{{{\eta }_{B}}}{{{\eta }_{A}}}$
Speed of light in the rarer medium is always greater than the denser medium ,
Using the general definition of refractive index Snell law can be written as,
$\dfrac{\operatorname{Sin}i}{\operatorname{Sin}r}=\dfrac{{{\eta }_{B}}}{{{\eta }_{A}}}=\dfrac{\dfrac{\text{speed of light in vacuum}}{\text{speed of light in B}}}{\dfrac{\text{speed of light in vacuum}}{\text{speed of light in A}}}$
After cancelling similar terms,
$\dfrac{\operatorname{Sin}i}{\operatorname{Sin}r}=\dfrac{\text{speed of light in A}}{\text{speed of light in B}}$
If we consider the above equation we know that speed of light in medium A is greater than in medium B. Hence,
$\operatorname{Sin}i>\operatorname{Sin}r$ implies that $i>r$
Hence the light bends as it moves from rarer to denser medium. Therefore the statement is true.
Additional information:
There is a better analogy to understand the above situation. If the light had to continue the same path in the denser medium it would have taken more time to come out of the medium. Since it bends it comparatively takes less time, as light wants to travel the fastest.
Note: When a ray of light enters from a rarer to denser medium light bends. But if the ray light moves from denser to rarer medium light moves away from the normal. Since the speed of light changes as it enters from a rarer to denser medium the frequency of light does not change but its wavelength changes.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers