Answer
Verified
429.3k+ views
Hint:
Here we will first assume the cost price of the table and chair to be some variable. Then we will form two equations using the condition given. We will solve these two equations to get the value of the cost price of the table and chair. Then we will find the list price or discounted price of the chair using the cost price.
Complete Step by Step Solution:
Let the cost price of the table be \[x\] and the cost price of the chair be \[y\].
Now we will form the equation using the condition given. It is given that a shopkeeper sells a table at \[8\% \] profit and a chair at \[10\% \] discount, thereby getting Rs. 1008. Therefore, we get
\[\dfrac{{x \times \left( {100 + 8} \right)}}{{100}} + \dfrac{{y \times \left( {100 - 10} \right)}}{{100}} = 1008\]
Now we will simplify this equation, we get
\[ \Rightarrow 108x + 90y = 100800\]
\[ \Rightarrow 6x + 5y = 5600\]……………………….. \[\left( 1 \right)\]
Now we will form the equation from another given condition. It is given that if he had sold the table at \[10\% \] profit and chair at \[8\% \] discount, he would have got Rs. 20 more. Therefore, we get
\[\dfrac{{x \times \left( {100 + 10} \right)}}{{100}} + \dfrac{{y \times \left( {100 - 8} \right)}}{{100}} = 1008 + 20\]
Now we will simplify this equation, we get
\[ \Rightarrow 110x + 92y = 102800\]
\[ \Rightarrow 55x + 46y = 51400\]……………………….. \[\left( 2 \right)\]
Multiplying equation \[\left( 1 \right)\] by 55, we get
\[\left( {6x + 5y} \right) \times 55 = 5600 \times 55\]
\[ \Rightarrow 330x + 275y = 308000\]………………………………..\[\left( 3 \right)\]
Multiplying equation \[\left( 2 \right)\] by 6, we get
\[\left( {55x + 46y} \right) \times 6 = 51400 \times 6\]
\[ \Rightarrow 330x + 276y = 308400\]…………………………………\[\left( 4 \right)\]
Subtracting equation \[\left( 4 \right)\] from equation \[\left( 2 \right)\], we get
\[\begin{array}{l}330x + 275y - \left( {330x + 276y} \right) = 308000 - 308400\\ \Rightarrow 330x + 275y - 330x - 276y = - 400\end{array}\]
Subtracting the like terms, we get
\[ \Rightarrow 0 - y = - 400\]
From the above equation, we get
\[ \Rightarrow - y = - 400\]
\[ \Rightarrow y = 400\]
Now put the value of \[y\] to get the value of \[x\] in equation \[\left( 1 \right)\]. Therefore, we get
\[ \Rightarrow 6x + 5\left( {400} \right) = 5600\]
\[ \Rightarrow 6x + 2000 = 5600\]
Subtracting the like terms, we get
\[\begin{array}{l} \Rightarrow 6x = 5600 - 2000\\ \Rightarrow 6x = 3600\end{array}\]
Dividing 3600 by 6, we get
\[ \Rightarrow x = \dfrac{{3600}}{6} = 600\]
So, the cost price of the table is equal to Rs 600 and the cost price of the chair Rs 400.
Hence the list price of the chair is \[ = 400 \times \dfrac{{90}}{{100}} = {\rm{Rs}}.360\]
Note:
Selling price is the price at which something is sold. Cost price is the cost of producing something or the price at which it is sold without making any money. Profit is the money that you make when you sell something for more than it cost you and loss is the money you make when you sell something for less than it cost you. List price is generally referred to as the discounted amount when a certain percent of discount is applied to the price of the product.
Here we will first assume the cost price of the table and chair to be some variable. Then we will form two equations using the condition given. We will solve these two equations to get the value of the cost price of the table and chair. Then we will find the list price or discounted price of the chair using the cost price.
Complete Step by Step Solution:
Let the cost price of the table be \[x\] and the cost price of the chair be \[y\].
Now we will form the equation using the condition given. It is given that a shopkeeper sells a table at \[8\% \] profit and a chair at \[10\% \] discount, thereby getting Rs. 1008. Therefore, we get
\[\dfrac{{x \times \left( {100 + 8} \right)}}{{100}} + \dfrac{{y \times \left( {100 - 10} \right)}}{{100}} = 1008\]
Now we will simplify this equation, we get
\[ \Rightarrow 108x + 90y = 100800\]
\[ \Rightarrow 6x + 5y = 5600\]……………………….. \[\left( 1 \right)\]
Now we will form the equation from another given condition. It is given that if he had sold the table at \[10\% \] profit and chair at \[8\% \] discount, he would have got Rs. 20 more. Therefore, we get
\[\dfrac{{x \times \left( {100 + 10} \right)}}{{100}} + \dfrac{{y \times \left( {100 - 8} \right)}}{{100}} = 1008 + 20\]
Now we will simplify this equation, we get
\[ \Rightarrow 110x + 92y = 102800\]
\[ \Rightarrow 55x + 46y = 51400\]……………………….. \[\left( 2 \right)\]
Multiplying equation \[\left( 1 \right)\] by 55, we get
\[\left( {6x + 5y} \right) \times 55 = 5600 \times 55\]
\[ \Rightarrow 330x + 275y = 308000\]………………………………..\[\left( 3 \right)\]
Multiplying equation \[\left( 2 \right)\] by 6, we get
\[\left( {55x + 46y} \right) \times 6 = 51400 \times 6\]
\[ \Rightarrow 330x + 276y = 308400\]…………………………………\[\left( 4 \right)\]
Subtracting equation \[\left( 4 \right)\] from equation \[\left( 2 \right)\], we get
\[\begin{array}{l}330x + 275y - \left( {330x + 276y} \right) = 308000 - 308400\\ \Rightarrow 330x + 275y - 330x - 276y = - 400\end{array}\]
Subtracting the like terms, we get
\[ \Rightarrow 0 - y = - 400\]
From the above equation, we get
\[ \Rightarrow - y = - 400\]
\[ \Rightarrow y = 400\]
Now put the value of \[y\] to get the value of \[x\] in equation \[\left( 1 \right)\]. Therefore, we get
\[ \Rightarrow 6x + 5\left( {400} \right) = 5600\]
\[ \Rightarrow 6x + 2000 = 5600\]
Subtracting the like terms, we get
\[\begin{array}{l} \Rightarrow 6x = 5600 - 2000\\ \Rightarrow 6x = 3600\end{array}\]
Dividing 3600 by 6, we get
\[ \Rightarrow x = \dfrac{{3600}}{6} = 600\]
So, the cost price of the table is equal to Rs 600 and the cost price of the chair Rs 400.
Hence the list price of the chair is \[ = 400 \times \dfrac{{90}}{{100}} = {\rm{Rs}}.360\]
Note:
Selling price is the price at which something is sold. Cost price is the cost of producing something or the price at which it is sold without making any money. Profit is the money that you make when you sell something for more than it cost you and loss is the money you make when you sell something for less than it cost you. List price is generally referred to as the discounted amount when a certain percent of discount is applied to the price of the product.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers