A solenoid of 10 Henry inductance and 2-ohm resistance, is connected to a 10-volt battery. In how much time the magnetic energy will be reached to \[1/4\text{th}\]of the maximum value.
A.3.5 sec
B.2.5 sec
C.5.5 sec
D.7.5 sec
Answer
Verified
479.4k+ views
Hint: The net magnetic field is the sum from each individual loop and is maximum in the middle of the solenoid because that point minimizes the average distance to each loop
Complete step-by-step solution:
Given,
Inductance, \[L=10\text{ H}\]
Resistance, \[r=2\text{ ohm}\]
Volt, \[V=10\text{ V}\]
Since, \[V=iR\]; where i is current
Therefore, current, \[{{i}_{o}}=\dfrac{10}{2}=5\text{A}\]
Now Maximum energy is,
\[\begin{gathered}
& {{E}_{0}}=\dfrac{1}{2}L\times {{i}_{o}} \\
& \text{ }=\dfrac{1}{2}\left( 10 \right)\times {{\left( 5 \right)}^{2}} \\
& \text{ }=125\text{ J} \\
\end{gathered}\]
Thus. \[1/4\text{th}\]of the total energy is,
\[\begin{gathered}
& E=\dfrac{1}{4}{{E}_{0}} \\
& \text{ }=\dfrac{{{E}_{0}}}{4} \\
& \text{ }=\dfrac{125}{4}\text{ J} \\
\end{gathered}\]
When \[E=\dfrac{125}{4}\text{ J}\], assume the current to be \[i\]
Now,
Current \[i\] is,
\[\begin{gathered}
& \text{ }E=\dfrac{1}{2}\times L\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=\dfrac{1}{2}\times \left( 10 \right)\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=5\times {{i}^{2}} \\
& \Rightarrow i=\dfrac{5}{2} \\
& \Rightarrow i=2.5\text{ A} \\
\end{gathered}\]
Now time taken to rise from 0 A to \[2.5\text{ A}\],
\[\begin{gathered}
& \text{ }i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow 2.5=5\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow {{e}^{-Rt/L}}=0.5 \\
& \Rightarrow \dfrac{-Rt}{L}={{\log }_{e}}\left( 0.5 \right) \\
& \Rightarrow \dfrac{Rt}{L}=0.693 \\
& \Rightarrow t=\dfrac{6.93}{2} \\
& \Rightarrow t=3.46\,\approx 3.5\text{ sec} \\
\end{gathered}\]
Hence, the correct answer is option A.
Note: while solving the formula, \[i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right]\] make sure that the exponential function is converted to logarithm function to make the solution easier to solve.
Complete step-by-step solution:
Given,
Inductance, \[L=10\text{ H}\]
Resistance, \[r=2\text{ ohm}\]
Volt, \[V=10\text{ V}\]
Since, \[V=iR\]; where i is current
Therefore, current, \[{{i}_{o}}=\dfrac{10}{2}=5\text{A}\]
Now Maximum energy is,
\[\begin{gathered}
& {{E}_{0}}=\dfrac{1}{2}L\times {{i}_{o}} \\
& \text{ }=\dfrac{1}{2}\left( 10 \right)\times {{\left( 5 \right)}^{2}} \\
& \text{ }=125\text{ J} \\
\end{gathered}\]
Thus. \[1/4\text{th}\]of the total energy is,
\[\begin{gathered}
& E=\dfrac{1}{4}{{E}_{0}} \\
& \text{ }=\dfrac{{{E}_{0}}}{4} \\
& \text{ }=\dfrac{125}{4}\text{ J} \\
\end{gathered}\]
When \[E=\dfrac{125}{4}\text{ J}\], assume the current to be \[i\]
Now,
Current \[i\] is,
\[\begin{gathered}
& \text{ }E=\dfrac{1}{2}\times L\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=\dfrac{1}{2}\times \left( 10 \right)\times {{i}^{2}} \\
& \Rightarrow \dfrac{125}{4}=5\times {{i}^{2}} \\
& \Rightarrow i=\dfrac{5}{2} \\
& \Rightarrow i=2.5\text{ A} \\
\end{gathered}\]
Now time taken to rise from 0 A to \[2.5\text{ A}\],
\[\begin{gathered}
& \text{ }i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow 2.5=5\left[ 1-{{e}^{-Rt/L}} \right] \\
& \Rightarrow {{e}^{-Rt/L}}=0.5 \\
& \Rightarrow \dfrac{-Rt}{L}={{\log }_{e}}\left( 0.5 \right) \\
& \Rightarrow \dfrac{Rt}{L}=0.693 \\
& \Rightarrow t=\dfrac{6.93}{2} \\
& \Rightarrow t=3.46\,\approx 3.5\text{ sec} \\
\end{gathered}\]
Hence, the correct answer is option A.
Note: while solving the formula, \[i={{i}_{o}}\left[ 1-{{e}^{-Rt/L}} \right]\] make sure that the exponential function is converted to logarithm function to make the solution easier to solve.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE