Answer
Verified
99.9k+ views
HintWe will use the concept of analogy of translatory motion and rotatory motion. We will find the equivalent relations for both the motions. Finally, we will find their ratio.
Formulae Used \[{K_t} = \frac{1}{2}m{v^2}\] And \[{K_r} = \frac{1}{5}m{v^2}\]
Step By Step Solution
Let the mass of the sphere be $m$ , its velocity be $v$ .
Now,
The translational kinetic energy , \[{K_t} = \frac{1}{2}m{v^2}\]
Then,
For the rotatory motion,
Moment of inertia $I$ is analogical to mass in translational motion.
Thus,
For sphere, \[I = \frac{2}{5}m{r^2}\]
Similarly,
Angular velocity $\omega $ is analogical to velocity in translational motion.
Thus,
For Sphere, $\omega = \frac{v}{r}$
Here,
$r$ is the radius of the sphere.
Now,
Rotational kinetic energy, \[{K_r} = \frac{1}{2}I{\omega ^2}\]
Thus,
Substituting the values, we get
\[{K_r} = \frac{1}{2} \times \frac{2}{5}m{r^2}\frac{{{v^2}}}{{{r^2}}}\]
Thus, we get
\[{K_r} = \frac{1}{5}m{v^2}\]
Now,
\[\left( {{K_t} + {K_r}} \right) = \frac{1}{2}m{v^2} + \frac{1}{5}m{v^2} = \frac{7}{{10}}m{v^2}\]
Thus,
\[{K_t}:\left( {{K_t} + {K_r}} \right) = \frac{1}{2}:\frac{7}{{10}} = 5:7\]
Hence,
The answer is (2).
Additional Information The moment of inertia we discussed is a parameter which comes from the observation that a rotating body acts as if all its mass is concentrated at a single point. Also the radius through which it rotates deviates from the original position of the actual one.
The translational motion and the rotatory motion are analogous at every aspect of parameters starting from radius to centripetal force.
Note: For calculating the rotatory kinetic energy, we assumed that the sphere was rotating about a fixed axis perpendicular to its plane and passing through its center. We can also take it to be random. But the calculations then become very clumsy. Though the answer will be the same.
Formulae Used \[{K_t} = \frac{1}{2}m{v^2}\] And \[{K_r} = \frac{1}{5}m{v^2}\]
Step By Step Solution
Let the mass of the sphere be $m$ , its velocity be $v$ .
Now,
The translational kinetic energy , \[{K_t} = \frac{1}{2}m{v^2}\]
Then,
For the rotatory motion,
Moment of inertia $I$ is analogical to mass in translational motion.
Thus,
For sphere, \[I = \frac{2}{5}m{r^2}\]
Similarly,
Angular velocity $\omega $ is analogical to velocity in translational motion.
Thus,
For Sphere, $\omega = \frac{v}{r}$
Here,
$r$ is the radius of the sphere.
Now,
Rotational kinetic energy, \[{K_r} = \frac{1}{2}I{\omega ^2}\]
Thus,
Substituting the values, we get
\[{K_r} = \frac{1}{2} \times \frac{2}{5}m{r^2}\frac{{{v^2}}}{{{r^2}}}\]
Thus, we get
\[{K_r} = \frac{1}{5}m{v^2}\]
Now,
\[\left( {{K_t} + {K_r}} \right) = \frac{1}{2}m{v^2} + \frac{1}{5}m{v^2} = \frac{7}{{10}}m{v^2}\]
Thus,
\[{K_t}:\left( {{K_t} + {K_r}} \right) = \frac{1}{2}:\frac{7}{{10}} = 5:7\]
Hence,
The answer is (2).
Additional Information The moment of inertia we discussed is a parameter which comes from the observation that a rotating body acts as if all its mass is concentrated at a single point. Also the radius through which it rotates deviates from the original position of the actual one.
The translational motion and the rotatory motion are analogous at every aspect of parameters starting from radius to centripetal force.
Note: For calculating the rotatory kinetic energy, we assumed that the sphere was rotating about a fixed axis perpendicular to its plane and passing through its center. We can also take it to be random. But the calculations then become very clumsy. Though the answer will be the same.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main