Answer
Verified
472.5k+ views
Hint: First of all, draw the figure for this problem with the help of the given data to get a clear idea of what we have to find. Then use the distance-time formula and second derivative test to find the shortest time period. So, use this concept to reach the solution to the given problem.
Complete step-by-step solution:
Given that the swimmer is at a point S which is at a distance ‘d’ km from point A.
Let the house of the swimmer be at point B.
Since the distance between point A and his house i.e., B is \[L{\text{ km}}\]. So, \[AB = L{\text{ km}}\].
Let the swimmer land at point C on the shore and let \[AC = x{\text{ km}}\]as shown in the below figure:
Therefore, from the figure \[SC = \sqrt {{x^2} + {d^2}} \] and \[CB = \left( {L - x} \right)\]
We know that \[{\text{time}} = \dfrac{{{\text{distance}}}}{{{\text{speed}}}}\]
Given that speed of the swimmer to swim from S to C \[ = u{\text{ km/hr}}\]
So, time taken to travel from S to C \[ = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u}\]
Also given that speed of the swimmer to walk from C to B \[ = v{\text{ km/hr}}\]
So, time taken to travel from S to B \[ = \dfrac{{L - x}}{v}\]
Let \[T\] be the time taken to travel from S to B
time taken to travel from S to B = time taken to travel from S to C + time taken to travel from C to B
\[ \Rightarrow T = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u} + \dfrac{{L - x}}{v}\]
Let \[f\left( x \right) = T = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u} + \dfrac{L}{v} - \dfrac{x}{v}\]
Differentiating \[f\left( x \right)\] with respective to \[x\], we have
\[
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{\sqrt {{x^2} + {d^2}} }}{u}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{L}{v}} \right) - \dfrac{d}{{dx}}\left( {\dfrac{x}{v}} \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{u}\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {d^2}} } \right) + \dfrac{d}{{dx}}\left( {\dfrac{L}{v}} \right) - \dfrac{1}{v}\dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{u}.\dfrac{{2x}}{{2\sqrt {{x^2} + {d^2}} }} + 0 - \dfrac{1}{v} \\
\]
We know that for the least and greatest value of any function is obtained by equating its first derivate to zero.
For maximum or minimum, put \[f'\left( x \right) = 0\]
\[
\Rightarrow \dfrac{1}{u}.\dfrac{{2x}}{{2\sqrt {{x^2} + {d^2}} }} + 0 - \dfrac{1}{v} = 0 \\
\Rightarrow \dfrac{x}{{u\sqrt {{x^2} + {d^2}} }} = \dfrac{1}{v} \\
\Rightarrow \dfrac{{\sqrt {{x^2} + {d^2}} }}{x} = \dfrac{v}{u} \\
\]
Squaring on both sides, we get
\[
\Rightarrow \dfrac{{{x^2} + {d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow \dfrac{{{x^2}}}{{{x^2}}} + \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow 1 + \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} - 1 \\
\Rightarrow \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2} - {u^2}}}{{{u^2}}} \\
\Rightarrow {x^2} = \dfrac{{{u^2}{d^2}}}{{{v^2} - {u^2}}} \\
\]
Rooting on both sides, we have
\[
\Rightarrow x = \pm \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }} \\
\therefore x = \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}{\text{ or }}\dfrac{{ - ud}}{{\sqrt {{v^2} - {u^2}} }} \\
\]
We know that, the least value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} > 0\] and the greatest value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} < 0\].
Now, consider the second derivative of \[f\left( x \right)\]
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\dfrac{x}{{u\sqrt {{x^2} + {d^2}} }}} \right)\]
\[
\Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\dfrac{x}{{u\sqrt {{x^2} + {d^2}} }}} \right) \\
\therefore f''\left( x \right) = \dfrac{{{d^2}}}{{u\left( {{x^2} + {d^2}} \right)\sqrt {{x^2} + {d^2}} }} \\
\]
For \[x = \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\] we have \[f''\left( {\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}} \right) > 0\].
So, the shortest possible time is \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\].
Thus, the correct option is A. \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\]
Note: For the least and greatest value of any function is obtained by equating its first derivate to zero. The least value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} > 0\] and the greatest value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} < 0\].
Complete step-by-step solution:
Given that the swimmer is at a point S which is at a distance ‘d’ km from point A.
Let the house of the swimmer be at point B.
Since the distance between point A and his house i.e., B is \[L{\text{ km}}\]. So, \[AB = L{\text{ km}}\].
Let the swimmer land at point C on the shore and let \[AC = x{\text{ km}}\]as shown in the below figure:
Therefore, from the figure \[SC = \sqrt {{x^2} + {d^2}} \] and \[CB = \left( {L - x} \right)\]
We know that \[{\text{time}} = \dfrac{{{\text{distance}}}}{{{\text{speed}}}}\]
Given that speed of the swimmer to swim from S to C \[ = u{\text{ km/hr}}\]
So, time taken to travel from S to C \[ = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u}\]
Also given that speed of the swimmer to walk from C to B \[ = v{\text{ km/hr}}\]
So, time taken to travel from S to B \[ = \dfrac{{L - x}}{v}\]
Let \[T\] be the time taken to travel from S to B
time taken to travel from S to B = time taken to travel from S to C + time taken to travel from C to B
\[ \Rightarrow T = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u} + \dfrac{{L - x}}{v}\]
Let \[f\left( x \right) = T = \dfrac{{\sqrt {{x^2} + {d^2}} }}{u} + \dfrac{L}{v} - \dfrac{x}{v}\]
Differentiating \[f\left( x \right)\] with respective to \[x\], we have
\[
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{\sqrt {{x^2} + {d^2}} }}{u}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{L}{v}} \right) - \dfrac{d}{{dx}}\left( {\dfrac{x}{v}} \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{u}\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {d^2}} } \right) + \dfrac{d}{{dx}}\left( {\dfrac{L}{v}} \right) - \dfrac{1}{v}\dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{u}.\dfrac{{2x}}{{2\sqrt {{x^2} + {d^2}} }} + 0 - \dfrac{1}{v} \\
\]
We know that for the least and greatest value of any function is obtained by equating its first derivate to zero.
For maximum or minimum, put \[f'\left( x \right) = 0\]
\[
\Rightarrow \dfrac{1}{u}.\dfrac{{2x}}{{2\sqrt {{x^2} + {d^2}} }} + 0 - \dfrac{1}{v} = 0 \\
\Rightarrow \dfrac{x}{{u\sqrt {{x^2} + {d^2}} }} = \dfrac{1}{v} \\
\Rightarrow \dfrac{{\sqrt {{x^2} + {d^2}} }}{x} = \dfrac{v}{u} \\
\]
Squaring on both sides, we get
\[
\Rightarrow \dfrac{{{x^2} + {d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow \dfrac{{{x^2}}}{{{x^2}}} + \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow 1 + \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} \\
\Rightarrow \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2}}}{{{u^2}}} - 1 \\
\Rightarrow \dfrac{{{d^2}}}{{{x^2}}} = \dfrac{{{v^2} - {u^2}}}{{{u^2}}} \\
\Rightarrow {x^2} = \dfrac{{{u^2}{d^2}}}{{{v^2} - {u^2}}} \\
\]
Rooting on both sides, we have
\[
\Rightarrow x = \pm \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }} \\
\therefore x = \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}{\text{ or }}\dfrac{{ - ud}}{{\sqrt {{v^2} - {u^2}} }} \\
\]
We know that, the least value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} > 0\] and the greatest value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} < 0\].
Now, consider the second derivative of \[f\left( x \right)\]
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\dfrac{x}{{u\sqrt {{x^2} + {d^2}} }}} \right)\]
\[
\Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\dfrac{x}{{u\sqrt {{x^2} + {d^2}} }}} \right) \\
\therefore f''\left( x \right) = \dfrac{{{d^2}}}{{u\left( {{x^2} + {d^2}} \right)\sqrt {{x^2} + {d^2}} }} \\
\]
For \[x = \dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\] we have \[f''\left( {\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}} \right) > 0\].
So, the shortest possible time is \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\].
Thus, the correct option is A. \[\dfrac{{ud}}{{\sqrt {{v^2} - {u^2}} }}\]
Note: For the least and greatest value of any function is obtained by equating its first derivate to zero. The least value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} > 0\] and the greatest value is obtained for the value of \[x\] at which \[\dfrac{{{d^2}f\left( x \right)}}{{d{x^2}}} < 0\].
Recently Updated Pages
A ray of light passes through an equilateral prism class 12 physics JEE_Main
The size of the image of an object which is at infinity class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
Rays from Sun converge at a point 15 cm in front of class 12 physics JEE_Main
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE