Answer
Verified
439.5k+ views
Hint: The power dissipated in a transmission line is proportional to square of the current. Here to find the power, we are given the values of electrical power produced and the voltage. Using the resistance per kilometer, we can find total resistance across \[20km\] cable. By substituting these values in the formula for power dissipated, we can find the percentage loss in power.
Formula used:
\[P={{I}^{2}}R\]
\[I=\dfrac{P}{V}\]
Complete answer:
Here,
Resistance, \[R=0.4\Omega /km\]
Then, total resistance across \[20km\] cable \[=0.4\Omega \times 20=8\Omega \]
We have,
\[P={{I}^{2}}R\] ---------- 1
Where,
\[P\] is the power dissipated
\[I\] is the rms current
\[R\] is the resistance
We have,
Current, \[I=\dfrac{P}{V}\]
Where,
\[P\] is the electrical power
\[V\] is the voltage
Given that, \[P=600kW\] and \[V=4000V\]. Then
Current, \[I=\dfrac{600\times {{10}^{3}}}{4000}=150A\]
Substitute the value of \[I\] and \[R\] in equation 1, we get,
\[P={{150}^{2}}\times 8=180000W=180kW\]
\[Percentage\text{ }loss\text{ }in\text{ }power=\dfrac{180}{600}\times 100=30\%\]
So, the correct answer is “Option B”.
Note:
The transmission over long distances creates power losses. The major part of the energy losses comes from power lines and Joule effect in transformers. The energy is lost as heat in the conductors. And the transmission lines have some amount of resistance. Hence power loss in transmission lines cannot be avoided.
Formula used:
\[P={{I}^{2}}R\]
\[I=\dfrac{P}{V}\]
Complete answer:
Here,
Resistance, \[R=0.4\Omega /km\]
Then, total resistance across \[20km\] cable \[=0.4\Omega \times 20=8\Omega \]
We have,
\[P={{I}^{2}}R\] ---------- 1
Where,
\[P\] is the power dissipated
\[I\] is the rms current
\[R\] is the resistance
We have,
Current, \[I=\dfrac{P}{V}\]
Where,
\[P\] is the electrical power
\[V\] is the voltage
Given that, \[P=600kW\] and \[V=4000V\]. Then
Current, \[I=\dfrac{600\times {{10}^{3}}}{4000}=150A\]
Substitute the value of \[I\] and \[R\] in equation 1, we get,
\[P={{150}^{2}}\times 8=180000W=180kW\]
\[Percentage\text{ }loss\text{ }in\text{ }power=\dfrac{180}{600}\times 100=30\%\]
So, the correct answer is “Option B”.
Note:
The transmission over long distances creates power losses. The major part of the energy losses comes from power lines and Joule effect in transformers. The energy is lost as heat in the conductors. And the transmission lines have some amount of resistance. Hence power loss in transmission lines cannot be avoided.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE