Answer
Verified
449.4k+ views
Hint:Consider the charge at any point and it is moved along the closed rectangle $ABCDA$ . Find the work done to move a charge from that point to reach the point again in a closed loop by using the formula of the work done given below.
Useful formula:
The formula for the work done to move the charge along the electric field is given by
$w = \int {\vec E.d\vec l} $
Where $w$ is the work done, $\vec E$ is the electric field along with its direction and $dl$ is the change in the length.
Complete step by step solution:
The electric field lines in the given diagram, shows that it moves from the positive charge and reaches the negative charge. Let us consider that the charge $q$ is placed at the point $A$ , then the work is done to move the charge along the closed lines $ABCDA$ .
$w = \int {\vec E.d\vec l} $
Since $\vec E$ is constant,
$w = \vec E\int {d\vec l} $
Since the length remains the same, the change in the length tends to zero. Hence,
$w = \vec E\int {\vec 0} $
The integration of the zero is also zero, substituting that in the above equation, we get
$w = 0$
Hence the work done to bring the charge $q$ along the closed line $ABCDE$ is zero.
Thus the option (C) is correct.
Note:The work done in bringing the charge along the closed path is always zero. This is because the closed path has a uniform electric field in its entire area and the electrostatic forces in it is conservative forces and hence the value of the work done is zero.
Useful formula:
The formula for the work done to move the charge along the electric field is given by
$w = \int {\vec E.d\vec l} $
Where $w$ is the work done, $\vec E$ is the electric field along with its direction and $dl$ is the change in the length.
Complete step by step solution:
The electric field lines in the given diagram, shows that it moves from the positive charge and reaches the negative charge. Let us consider that the charge $q$ is placed at the point $A$ , then the work is done to move the charge along the closed lines $ABCDA$ .
$w = \int {\vec E.d\vec l} $
Since $\vec E$ is constant,
$w = \vec E\int {d\vec l} $
Since the length remains the same, the change in the length tends to zero. Hence,
$w = \vec E\int {\vec 0} $
The integration of the zero is also zero, substituting that in the above equation, we get
$w = 0$
Hence the work done to bring the charge $q$ along the closed line $ABCDE$ is zero.
Thus the option (C) is correct.
Note:The work done in bringing the charge along the closed path is always zero. This is because the closed path has a uniform electric field in its entire area and the electrostatic forces in it is conservative forces and hence the value of the work done is zero.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE