Answer
Verified
397.8k+ views
Hint: To solve these types of questions we need to know about the $RL$ circuit. A $RL$ circuit is an electric circuit that is made up of resistors and inductors. In the question it is mentioned that an alternating voltage is concerned in series with a resistance $r$ and inductance $L$, hence the same current will flow through the inductor and resistor.
Formula used:
$V=\sqrt{{{\left( {{V}_{R}} \right)}^{2}}+{{\left( {{V}_{L}} \right)}^{2}}}$
Here $V$ is the applied voltage,
${{V}_{R}}$ is the potential drop across the resistance of the circuit,
${{V}_{L}}$ is the potential drop across the inductance.
Complete step-by-step solution:
Let us assume that current $''i''$ flows through the circuit. Since the resistance $r$ and inductance $L$ are connected in series hence the same current will flow through them. The potential difference across the inductor $\left( {{V}_{L}} \right)$ leads the current by $\dfrac{\pi }{2}$ while the potential difference across the resistor $\left( {{V}_{R}} \right)$ will be in phase with the current, hence the resultant potential difference i.e., the applied potential difference will be as follows:
$V=\sqrt{{{\left( {{V}_{R}} \right)}^{2}}+{{\left( {{V}_{L}} \right)}^{2}}}$
It is given in the question that the potential drop across the resistance is $200$ volt and across the inductance is $150$ volt, thus on substituting the values in the equation, the applied voltage will be:
$\begin{align}
& V=\sqrt{{{\left( 200 \right)}^{2}}+{{\left( 150 \right)}^{2}}} \\
& \Rightarrow V=\sqrt{40000+22500} \\
& \Rightarrow V=\sqrt{62500} \\
& \therefore V=250\text{ V} \\
\end{align}$
Hence, the applied voltage will be $250\text{ V}$ and the correct option will be $B$.
Note: To solve these types of questions, we need to remember the phase difference between the potential difference and current in various electrical components of the circuit. It must be remembered that in a $RL$ circuit the potential difference across the inductor $\left( {{V}_{L}} \right)$ leads the current by $\dfrac{\pi }{2}$, across the resistor $\left( {{V}_{R}} \right)$ is in phase with the current.
Formula used:
$V=\sqrt{{{\left( {{V}_{R}} \right)}^{2}}+{{\left( {{V}_{L}} \right)}^{2}}}$
Here $V$ is the applied voltage,
${{V}_{R}}$ is the potential drop across the resistance of the circuit,
${{V}_{L}}$ is the potential drop across the inductance.
Complete step-by-step solution:
Let us assume that current $''i''$ flows through the circuit. Since the resistance $r$ and inductance $L$ are connected in series hence the same current will flow through them. The potential difference across the inductor $\left( {{V}_{L}} \right)$ leads the current by $\dfrac{\pi }{2}$ while the potential difference across the resistor $\left( {{V}_{R}} \right)$ will be in phase with the current, hence the resultant potential difference i.e., the applied potential difference will be as follows:
$V=\sqrt{{{\left( {{V}_{R}} \right)}^{2}}+{{\left( {{V}_{L}} \right)}^{2}}}$
It is given in the question that the potential drop across the resistance is $200$ volt and across the inductance is $150$ volt, thus on substituting the values in the equation, the applied voltage will be:
$\begin{align}
& V=\sqrt{{{\left( 200 \right)}^{2}}+{{\left( 150 \right)}^{2}}} \\
& \Rightarrow V=\sqrt{40000+22500} \\
& \Rightarrow V=\sqrt{62500} \\
& \therefore V=250\text{ V} \\
\end{align}$
Hence, the applied voltage will be $250\text{ V}$ and the correct option will be $B$.
Note: To solve these types of questions, we need to remember the phase difference between the potential difference and current in various electrical components of the circuit. It must be remembered that in a $RL$ circuit the potential difference across the inductor $\left( {{V}_{L}} \right)$ leads the current by $\dfrac{\pi }{2}$, across the resistor $\left( {{V}_{R}} \right)$ is in phase with the current.
Recently Updated Pages
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE