Answer
Verified
459.3k+ views
Hint:Here,we are going to apply the concept of alternating current as well as direct current and determine the resultant current by adding the AC and DC component of the current. Use the formula for the rms value of the current to determine the rms current.
Formula used:
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{I^2}dt} }}{T}\]
Here, \[{I_{rms}}\] is the rms value of the resultant current and T is the period.
Complete step by step answer:
The resultant value of the current is the sum of AC and DC currents.
\[\Rightarrow I = {I_{DC}} + {I_{AC}}\]
\[ \Rightarrow I = 8 + 6\sin \omega t\]
The rms value of the resultant current is given as,
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{I^2}dt} }}{T}\]
Here, T is the period.
Substitute the resultant value of the current in the above equation.
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{{\left( {8 + 6\sin \omega t} \right)}^2}dt} }}{T}\]
Solve the above equation further as follows.
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 36{{\sin }^2}\omega t + 96\sin \omega t} \right)dt} }}{T}\]
Use, \[{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}\].
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 36\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right) + 96\sin \omega t} \right)dt} }}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 18 - 18\cos 2\omega t + 96\sin \omega t} \right)dt} }}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82t + 18\dfrac{{\sin \omega t}}{{2\omega }} + 96\dfrac{{\cos \omega t}}{\omega }} \right)_0^T}}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + 18\dfrac{{\sin \omega T}}{{2\omega }} + 96\dfrac{{\cos \omega T}}{\omega }} \right) - \left( {82\left( 0 \right) + 18\dfrac{{\sin \omega \left( 0 \right)}}{{2\omega }} + 96\dfrac{{\cos \omega \left( 0 \right)}}{\omega }} \right)}}{T}\]
Use the relation, \[\omega = \dfrac{{2\pi }}{T}\] in the above equation. We get,
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + 18\dfrac{{\sin 2\pi }}{{2\omega }} + 96\dfrac{{\cos 2\pi }}{\omega }} \right) - \left( {82\left( 0 \right) + 18\dfrac{{\sin \omega \left( 0 \right)}}{{2\omega }} + 96\dfrac{{\cos \omega \left( 0 \right)}}{\omega }} \right)}}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + \dfrac{{96}}{\omega }} \right) - \left( {\dfrac{{96}}{\omega }} \right)}}{T}\]
\[\Rightarrow I_{rms}^2 = 82\]
Therefore,
\[\Rightarrow{I_{rms}} = 9.05\,A\]
So, the correct answer is option (A).
Note: The integration of \[\sin \theta \] is \[ - \cos \theta \] and integration of \[\cos \theta \] is \[\sin \theta \]. Also, remember \[\cos n\pi = {\left( { - 1} \right)^n}\].Also remember that alternating current can be defined as a current that changes its magnitude and polarity at regular intervals of time. It can also be defined as an electrical current which repeatedly changes or reverses its direction opposite to that of Direct Current or DC which always flows in a single direction.
Formula used:
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{I^2}dt} }}{T}\]
Here, \[{I_{rms}}\] is the rms value of the resultant current and T is the period.
Complete step by step answer:
The resultant value of the current is the sum of AC and DC currents.
\[\Rightarrow I = {I_{DC}} + {I_{AC}}\]
\[ \Rightarrow I = 8 + 6\sin \omega t\]
The rms value of the resultant current is given as,
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{I^2}dt} }}{T}\]
Here, T is the period.
Substitute the resultant value of the current in the above equation.
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {{{\left( {8 + 6\sin \omega t} \right)}^2}dt} }}{T}\]
Solve the above equation further as follows.
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 36{{\sin }^2}\omega t + 96\sin \omega t} \right)dt} }}{T}\]
Use, \[{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}\].
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 36\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right) + 96\sin \omega t} \right)dt} }}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\int\limits_0^T {\left( {64 + 18 - 18\cos 2\omega t + 96\sin \omega t} \right)dt} }}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82t + 18\dfrac{{\sin \omega t}}{{2\omega }} + 96\dfrac{{\cos \omega t}}{\omega }} \right)_0^T}}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + 18\dfrac{{\sin \omega T}}{{2\omega }} + 96\dfrac{{\cos \omega T}}{\omega }} \right) - \left( {82\left( 0 \right) + 18\dfrac{{\sin \omega \left( 0 \right)}}{{2\omega }} + 96\dfrac{{\cos \omega \left( 0 \right)}}{\omega }} \right)}}{T}\]
Use the relation, \[\omega = \dfrac{{2\pi }}{T}\] in the above equation. We get,
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + 18\dfrac{{\sin 2\pi }}{{2\omega }} + 96\dfrac{{\cos 2\pi }}{\omega }} \right) - \left( {82\left( 0 \right) + 18\dfrac{{\sin \omega \left( 0 \right)}}{{2\omega }} + 96\dfrac{{\cos \omega \left( 0 \right)}}{\omega }} \right)}}{T}\]
\[\Rightarrow I_{rms}^2 = \dfrac{{\left( {82T + \dfrac{{96}}{\omega }} \right) - \left( {\dfrac{{96}}{\omega }} \right)}}{T}\]
\[\Rightarrow I_{rms}^2 = 82\]
Therefore,
\[\Rightarrow{I_{rms}} = 9.05\,A\]
So, the correct answer is option (A).
Note: The integration of \[\sin \theta \] is \[ - \cos \theta \] and integration of \[\cos \theta \] is \[\sin \theta \]. Also, remember \[\cos n\pi = {\left( { - 1} \right)^n}\].Also remember that alternating current can be defined as a current that changes its magnitude and polarity at regular intervals of time. It can also be defined as an electrical current which repeatedly changes or reverses its direction opposite to that of Direct Current or DC which always flows in a single direction.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers