![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
An equilateral triangle has an altitude of \[15\]m. What is the perimeter of the triangle?
Answer
383.7k+ views
Hint: We will use the concepts in geometry such as triangles and their properties to solve the given problem.
We will define different types of triangles and their properties by illustrating them. We will use Pythagoras theorem too while solving this problem.
In mathematics, a triangle is a polygon (a closed figure) with three sides.
Equilateral triangle – A triangle with all sides equal.
In a triangle, a perpendicular drawn from a point to the side opposite to that point is called the altitude of a triangle.
Here, the line \[{\text{AD}}\] is called the altitude.
In an equilateral triangle, all sides are equal and that implies that all angles are equal to \[{60^ \circ }\].
Complete step by step solution:
Consider the figure.
Let the side of an equilateral triangle be ‘\[a\]’.
From the triangle, \[\vartriangle ACD\].
By applying Pythagoras theorem in \[\vartriangle ACD\], we get, \[A{D^2} + D{C^2} = A{C^2}\]
\[ \Rightarrow {h^2} + {\left( {\dfrac{a}{2}} \right)^2} = {a^2}\]
\[ \Rightarrow {h^2} = {a^2} - \dfrac{{{a^2}}}{4} = \dfrac{{3{a^2}}}{4}\]
So, we get, \[h = \dfrac{{a\sqrt 3 }}{2}\]
And this is the relation between altitude of an equilateral triangle and the side of an equilateral triangle.
So, now, it is given that, the altitude of an equilateral triangle is \[15{\text{ m}}\].
Substituting this in the above relation, we get,
\[ \Rightarrow 15 = \dfrac{{a\sqrt 3 }}{2}\]
\[ \Rightarrow a = \dfrac{{30}}{{\sqrt 3 }} = \dfrac{{3 \times 10}}{{\sqrt 3 }} = 10\sqrt 3 \]
So, side of this equilateral triangle is \[10\sqrt 3 {\text{ m}}\].
And we all know that, perimeter of an equilateral triangle of length \[a\] is \[3a\] units.
Therefore, the perimeter of this equilateral triangle is \[3 \times 10\sqrt 3 = 30\sqrt 3 {\text{ m}}\].
Note:
Other two types of triangles based on lengths of sides are:
(1) Scalene triangle – A triangle with all three sides of different lengths.
(2) Isosceles triangle – A triangle with two sides equal.
> We found the relation between altitude and side by applying Pythagoras theorem. But instead, we can also do it in another way.
In triangle \[\vartriangle ACD\], take the tangent ratio of angle C.
\[ \Rightarrow \tan C = \dfrac{{AD}}{{DC}} = \dfrac{h}{{\dfrac{a}{2}}} = \dfrac{{2h}}{a}\]
And we know that all angles of an equilateral triangle are \[{60^ \circ }\]. So, \[C = {60^ \circ }\]
\[ \Rightarrow \tan {60^ \circ } = \dfrac{{2h}}{a}\]
And we know that, \[\tan {60^ \circ } = \sqrt 3 \].
\[ \Rightarrow \sqrt 3 = \dfrac{{2h}}{a}\]
\[ \Rightarrow h = \dfrac{{\sqrt 3 }}{2}a\]
And using this, we can solve our required problem.
We will define different types of triangles and their properties by illustrating them. We will use Pythagoras theorem too while solving this problem.
In mathematics, a triangle is a polygon (a closed figure) with three sides.
Equilateral triangle – A triangle with all sides equal.
![seo images](https://www.vedantu.com/question-sets/f93f0c4e-90ed-468d-a50d-c8a43f7245261114625941085666863.png)
In a triangle, a perpendicular drawn from a point to the side opposite to that point is called the altitude of a triangle.
![seo images](https://www.vedantu.com/question-sets/eff6de8c-0d0d-40db-b88b-bfa56e5c25ec8492131631371933774.png)
Here, the line \[{\text{AD}}\] is called the altitude.
In an equilateral triangle, all sides are equal and that implies that all angles are equal to \[{60^ \circ }\].
Complete step by step solution:
Consider the figure.
![seo images](https://www.vedantu.com/question-sets/28767e57-400a-49cc-9cbc-c29b91caa306284676775035611786.png)
Let the side of an equilateral triangle be ‘\[a\]’.
From the triangle, \[\vartriangle ACD\].
By applying Pythagoras theorem in \[\vartriangle ACD\], we get, \[A{D^2} + D{C^2} = A{C^2}\]
\[ \Rightarrow {h^2} + {\left( {\dfrac{a}{2}} \right)^2} = {a^2}\]
\[ \Rightarrow {h^2} = {a^2} - \dfrac{{{a^2}}}{4} = \dfrac{{3{a^2}}}{4}\]
So, we get, \[h = \dfrac{{a\sqrt 3 }}{2}\]
And this is the relation between altitude of an equilateral triangle and the side of an equilateral triangle.
So, now, it is given that, the altitude of an equilateral triangle is \[15{\text{ m}}\].
Substituting this in the above relation, we get,
\[ \Rightarrow 15 = \dfrac{{a\sqrt 3 }}{2}\]
\[ \Rightarrow a = \dfrac{{30}}{{\sqrt 3 }} = \dfrac{{3 \times 10}}{{\sqrt 3 }} = 10\sqrt 3 \]
So, side of this equilateral triangle is \[10\sqrt 3 {\text{ m}}\].
And we all know that, perimeter of an equilateral triangle of length \[a\] is \[3a\] units.
Therefore, the perimeter of this equilateral triangle is \[3 \times 10\sqrt 3 = 30\sqrt 3 {\text{ m}}\].
Note:
Other two types of triangles based on lengths of sides are:
(1) Scalene triangle – A triangle with all three sides of different lengths.
![seo images](https://www.vedantu.com/question-sets/0796cb01-c9e0-41df-9c3b-b590529c32424308439451446235785.png)
(2) Isosceles triangle – A triangle with two sides equal.
![seo images](https://www.vedantu.com/question-sets/f5737aa6-4467-471b-8c8b-ee7091944c496770717200268023938.png)
> We found the relation between altitude and side by applying Pythagoras theorem. But instead, we can also do it in another way.
In triangle \[\vartriangle ACD\], take the tangent ratio of angle C.
\[ \Rightarrow \tan C = \dfrac{{AD}}{{DC}} = \dfrac{h}{{\dfrac{a}{2}}} = \dfrac{{2h}}{a}\]
And we know that all angles of an equilateral triangle are \[{60^ \circ }\]. So, \[C = {60^ \circ }\]
\[ \Rightarrow \tan {60^ \circ } = \dfrac{{2h}}{a}\]
And we know that, \[\tan {60^ \circ } = \sqrt 3 \].
\[ \Rightarrow \sqrt 3 = \dfrac{{2h}}{a}\]
\[ \Rightarrow h = \dfrac{{\sqrt 3 }}{2}a\]
And using this, we can solve our required problem.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you graph the function fx 4x class 9 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Name the states which share their boundary with Indias class 9 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Plant Cell and Animal Cell
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is pollution? How many types of pollution? Define it
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.
![arrow-right](/cdn/images/seo-templates/arrow-right.png)