Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

An equilateral triangle has an altitude of 15m. What is the perimeter of the triangle?

Answer
VerifiedVerified
397.8k+ views
like imagedislike image
Hint: We will use the concepts in geometry such as triangles and their properties to solve the given problem.
We will define different types of triangles and their properties by illustrating them. We will use Pythagoras theorem too while solving this problem.
In mathematics, a triangle is a polygon (a closed figure) with three sides.
Equilateral triangle – A triangle with all sides equal.
seo images

In a triangle, a perpendicular drawn from a point to the side opposite to that point is called the altitude of a triangle.
seo images

Here, the line AD is called the altitude.
In an equilateral triangle, all sides are equal and that implies that all angles are equal to 60.

Complete step by step solution:
Consider the figure.
seo images

Let the side of an equilateral triangle be ‘a’.
From the triangle, ACD.
By applying Pythagoras theorem in ACD, we get, AD2+DC2=AC2
h2+(a2)2=a2
h2=a2a24=3a24
So, we get, h=a32
And this is the relation between altitude of an equilateral triangle and the side of an equilateral triangle.
So, now, it is given that, the altitude of an equilateral triangle is 15 m.
Substituting this in the above relation, we get,
15=a32
a=303=3×103=103
So, side of this equilateral triangle is 103 m.
And we all know that, perimeter of an equilateral triangle of length a is 3a units.
Therefore, the perimeter of this equilateral triangle is 3×103=303 m.

Note:
Other two types of triangles based on lengths of sides are:
(1) Scalene triangle – A triangle with all three sides of different lengths.
seo images

(2) Isosceles triangle – A triangle with two sides equal.
seo images

> We found the relation between altitude and side by applying Pythagoras theorem. But instead, we can also do it in another way.
In triangle ACD, take the tangent ratio of angle C.
tanC=ADDC=ha2=2ha
And we know that all angles of an equilateral triangle are 60. So, C=60
tan60=2ha
And we know that, tan60=3.
3=2ha
h=32a
And using this, we can solve our required problem.