Answer
Verified
449.4k+ views
Hint: Velocity with which the object travels is 17 m/sec and the height of the building is 12m. After a time t seconds, we have the equation of height as $ S = 12 + 17t - 5{t^2} $ in terms of velocity (17), height (12) and acceleration (5). As the height is relative to the ground, when an object touches the ground the height will be 0 m. So the value of S in the equation $ S = 12 + 17t - 5{t^2} $ will be zero when the object touches the ground. Find the value of t using the below formula of quadratic equation.
Formula used:
When a quadratic equation is in the form of $ a{x^2} + bx + c = 0 $ where a is not equal to zero, the value of x will be $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ where a, b and c are the coefficients. This formula is called a quadratic formula.
Complete step-by-step answer:
We are given that an object is thrown upwards with an initial velocity of 17 m/sec from a building with 12 m height and it is at a height of $ S = 12 + 17t - 5{t^2} $ from the ground after a flight of 't' seconds.
When the object touches the ground, the height S will be zero.
Therefore, $ S = 0 $
But we already have that $ S = 12 + 17t - 5{t^2} $
This gives us $ 0 = 12 + 17t - 5{t^2} $
$ \Rightarrow 12 + 17t - 5{t^2} = 0 $
As we can see the above equation is a quadratic equation and when we compare the above equation with $ a{x^2} + bx + c = 0 $ , we get $ a = - 5,b = 17,c = 12 $
The value of $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ , which means the value of $ t = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
Substitute the values of a, b and c to find the value of t
$ \Rightarrow t = \dfrac{{ - \left( {17} \right) \pm \sqrt {{{17}^2} - 4\left( { - 5} \right)\left( {12} \right)} }}{{2\left( { - 5} \right)}} $
$ \Rightarrow t = \dfrac{{ - 17 \pm \sqrt {289 + 240} }}{{ - 10}} = \dfrac{{17 \pm \sqrt {529} }}{{10}} = \dfrac{{17 \pm 23}}{{10}} $
$ \Rightarrow t = \dfrac{{17 + 23}}{{10}},t = \dfrac{{17 - 23}}{{10}} $
$ \Rightarrow t = \dfrac{{40}}{{10}},t = \dfrac{{ - 6}}{{10}} $
$ \Rightarrow t = 4sec,t = - 0.6sec $
We have got 2 values for t, but one is positive and one is negative.
Time cannot be negative.
Therefore the time taken by the object to touch the ground is 4 seconds.
So, the correct answer is “4 seconds”.
Note: Quadratic equations can also be factored instead of using the above formula to find the values of x. When the equations cannot be factored we can use quadratic formulas. Using quadratic formulas, we may get real values and imaginary values. The no. of solutions of an equation depends upon the highest degree of the variable. If the highest degree is 2, it will have 2 solutions; if the highest degree is 3 it will have 3 solutions and so on.
Formula used:
When a quadratic equation is in the form of $ a{x^2} + bx + c = 0 $ where a is not equal to zero, the value of x will be $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ where a, b and c are the coefficients. This formula is called a quadratic formula.
Complete step-by-step answer:
We are given that an object is thrown upwards with an initial velocity of 17 m/sec from a building with 12 m height and it is at a height of $ S = 12 + 17t - 5{t^2} $ from the ground after a flight of 't' seconds.
When the object touches the ground, the height S will be zero.
Therefore, $ S = 0 $
But we already have that $ S = 12 + 17t - 5{t^2} $
This gives us $ 0 = 12 + 17t - 5{t^2} $
$ \Rightarrow 12 + 17t - 5{t^2} = 0 $
As we can see the above equation is a quadratic equation and when we compare the above equation with $ a{x^2} + bx + c = 0 $ , we get $ a = - 5,b = 17,c = 12 $
The value of $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ , which means the value of $ t = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
Substitute the values of a, b and c to find the value of t
$ \Rightarrow t = \dfrac{{ - \left( {17} \right) \pm \sqrt {{{17}^2} - 4\left( { - 5} \right)\left( {12} \right)} }}{{2\left( { - 5} \right)}} $
$ \Rightarrow t = \dfrac{{ - 17 \pm \sqrt {289 + 240} }}{{ - 10}} = \dfrac{{17 \pm \sqrt {529} }}{{10}} = \dfrac{{17 \pm 23}}{{10}} $
$ \Rightarrow t = \dfrac{{17 + 23}}{{10}},t = \dfrac{{17 - 23}}{{10}} $
$ \Rightarrow t = \dfrac{{40}}{{10}},t = \dfrac{{ - 6}}{{10}} $
$ \Rightarrow t = 4sec,t = - 0.6sec $
We have got 2 values for t, but one is positive and one is negative.
Time cannot be negative.
Therefore the time taken by the object to touch the ground is 4 seconds.
So, the correct answer is “4 seconds”.
Note: Quadratic equations can also be factored instead of using the above formula to find the values of x. When the equations cannot be factored we can use quadratic formulas. Using quadratic formulas, we may get real values and imaginary values. The no. of solutions of an equation depends upon the highest degree of the variable. If the highest degree is 2, it will have 2 solutions; if the highest degree is 3 it will have 3 solutions and so on.
Recently Updated Pages
How many nonprime factors are in the number N 25 times class 9 maths CBSE
When was the National Council of Education Setup A class 9 social science CBSE
Name the tree as per its characteristics given below class 9 social science CBSE
Name the six principal organs of the United Nation class 9 social science CBSE
What is the name of the stream that flows through the class 9 social science CBSE
Milk is an example of A Suspension B True solution class 9 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
What is pollution? How many types of pollution? Define it
Voters list is known as A Ticket B Nomination form class 9 social science CBSE
The president of the constituent assembly was A Dr class 9 social science CBSE